
Maastricht University SWIM 2024 1

An aymptotic minimal contractor
for non-linear equations
using the Codac library

Simon Rohou

ENSTA Bretagne, Lab-STICC, UMR CNRS 6285, Brest, France

simon.rohou@ensta-bretagne.fr

Keywords: non-linear systems, contractors, centered form

Introduction

We consider the problem of approximating the solutions of the system
f(x) = 0, where f : Rn → Rp is a non-linear function. In particu-
lar, we will consider systems where p < n for which the solution set
X = {x ∈ Rn | f(x) = 0} has infinitely many solutions.

Interval methods can be used to over-approximate such sets in a
reliable way. They are often based on axis-aligned boxes [x] ∈ IRn.
When sets are described as non-linear systems, such as f(x) = 0, nat-
ural inclusion functions can be used to easily and reliably evaluate
boxes [f ]([x]). They can be employed in branch-and-prune algorithms
in order to pave the solution set X more accurately. However, these
methods involve bisections which comes with an exponential complex-
ity with respect to n. Contractor operators, often designed with poly-
nomial complexity, have been shown to overcome this issue by using
bisections as a last resort in exploration algorithms [2].

Contractors

A contractor on a set X, denoted by CX, is an operator that aims at
narrowing a box [x] ∈ IRn in order to reliably remove vectors of [x]



Maastricht University SWIM 2024 2

that are not part of the set X. Algorithms exist to automatically build
contractors for a given non-linear equation; the state-of-the-art on this
topic is the HC4Revise algorithm [1].

As for natural inclusion functions, the efficiency of an HC4Revise

contractor will be impacted by multi-occurrences in the analytic ex-
pression of f . Solutions exist, such as symbolic rewriting or affine arith-
metic [6], but they are not always minimal, difficult to use, or based on
complicated algorithms. On the other hand, the use of centered-form
computations provides asymptotically minimal results, as shown in [3].

Centered form contractor

The centered form approach improves the contractions by involving
the Jacobian of f as expressed in Equation (1), where x is the center
of the box [x]:

fc([x]) = f(x) +
∂f

∂x

(
[x]

)(
[x]− x

)
. (1)

We propose an automatic way to obtain centered form contractors
for non-linear systems. First, the interval Jacobian ∂f

∂x

(
[x]

)
is com-

puted using Automatic Differentiation. Then, the matricial expression
of Equation (1) is treated using an efficient linear contractor with pre-
conditioning.

Implementation and results

The efficiency of the proposed contractor, called CtcInverse, will be
illustrated on several examples. One of them is taken from the litera-
ture [4] and given by the following function f : R3 → R2:

f(x) =

(
−x23 + 2x3 sin(x3x1) + cos(x3x2)

2x3 cos(x3x1)− sin(x3x2)

)
. (2)

The solution set X of Equation (2) for f(x) = 0 is illustrated
in Figure 1 for [x0] = [0, 2] × [2, 4] × [0, 10] and ϵ = 4 × 10−3. A



Maastricht University SWIM 2024 3

comparison between the two contractors HC4Revise and CtcInverse

is given: these two algorithms are provided in Codac and are based
on the same elementary reverse operations provided by the GAOL li-
brary. The computation time difference is mainly due to the number
of boxes: CtcInverse allows asymptotically minimal contractions for
small boxes thanks to the centered form, and so a thinner and thus
faster approximation of X.

(a) X computed with HC4Revise.
Computation time: 4.51s. 27430 boxes.

(b) X computed with CtcInverse.
Computation time: 0.69s. 3713 boxes.

Figure 1: Example of set inversion of Equation (2) using the state-of-
the-art HC4Revise and the proposed CtcInverse contractors. The ap-
proximated three-dimensional solution sets are projected onto (x1, x2).

CtcInverse is now available in the Codac library [5] (v2.0). In
particular, the code of Figure 1b is given in Figure 2 as an example
of use of Codac. The user does not have to provide the Jacobian of
Equation (1), it is deduced by Automatic Differentiation. Codac is
available in C++, Python and Matlab languages and provided under
GNU LGPL. More information on: http://codac.io



Maastricht University SWIM 2024 4

from codac import * # using Codac 2.0 at least

x = VectorVar(3)

f = AnalyticFunction([x], vec(

-sqr(x[2])+2*x[2]*sin(x[2]*x[0])+cos(x[2]*x[1]),

2*x[2]*cos(x[2]*x[0])-sin(x[2]*x[1])

))

ctc = CtcInverse(f, [[0],[0]])

pave([[0,2],[2,4],[0,10]], ctc, 0.004)

Figure 2: Inversion of Eq. (2) using the Codac library (here in Python).

References

[1] F. Benhamou, F. Goualard, L. Granvilliers, and J. F. Puget. Re-
vising hull and box consistency. In Proceedings of the International
Conference on Logic Programming, pages 230–244, 1999.

[2] Gilles Chabert and Luc Jaulin. Contractor programming. Artificial
Intelligence, 173(11):1079–1100, July 2009.

[3] Luc Jaulin. Asymptotically minimal interval contractors based on
the centered form; application to the stability analysis of linear
time-delayed differential equations. Acta Cybernetica, 2024.

[4] Rachid Malti, Milan R. Rapaić, and Vukan Turkulov. A unified
framework for exponential stability analysis of irrational transfer
functions in the parametric space. Annual Reviews in Control,
57:100935, 2024.

[5] Simon Rohou, Benôıt Desrochers, and Fabrice Le Bars. The Codac
Library. Acta Cybernetica, Mar. 2024.

[6] Siegfried M. Rump and Masahide Kashiwagi. Implementation and
improvements of affine arithmetic. Nonlinear Theory and Its Ap-
plications, IEICE, 6(3):341–359, 2015.


