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Set-membership methods for mobile robotics

Mobile robotics
I Daurade: Autonomous Underwater Vehicle (AUV)
I weight: 1010kg – length: 5m – max depth: 300m

Special thanks to DGA-TN Brest (formerly GESMA)
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Set-membership methods for mobile robotics

Uncertainties as sets

Example of range-only robot localization (three beacons):
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Set-membership methods for mobile robotics

Constraint programming: overall concept
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I system described by a constraint network

I variables belonging to domains X

I continuous constraints L: non-linear equations, inequalities, . . .
I representable domains: e.g. boxes [x]

I resolution by contractors, CL([x])

solution

domain X

Constraint network:

Variables: x

Constraints:

1. L1(x)

2. L2(x)

3. . . .

Domains: X
� Contractor Programming
Chabert, Jaulin Artifical Intelligence, 2009



Set-membership methods for mobile robotics

Constraint programming: overall concept

Simon Rohou AID 2019 4 / 23

I system described by a constraint network

I variables belonging to domains X

I continuous constraints L: non-linear equations, inequalities, . . .

I representable domains: e.g. boxes [x]

I resolution by contractors, CL([x])

solution

constrained domain

Constraint network:

Variables: x

Constraints:

1. L1(x)

2. L2(x)

3. . . .

Domains: X
� Contractor Programming
Chabert, Jaulin Artifical Intelligence, 2009



Set-membership methods for mobile robotics

Constraint programming: overall concept

Simon Rohou AID 2019 4 / 23

I system described by a constraint network

I variables belonging to domains X

I continuous constraints L: non-linear equations, inequalities, . . .

I representable domains: e.g. boxes [x]

I resolution by contractors, CL([x])

solution

constrained domain

Constraint network:

Variables: x

Constraints:

1. L1(x)

2. L2(x)

3. . . .

Domains: X
� Contractor Programming
Chabert, Jaulin Artifical Intelligence, 2009



Set-membership methods for mobile robotics

Constraint programming: overall concept

Simon Rohou AID 2019 4 / 23

I system described by a constraint network

I variables belonging to domains X

I continuous constraints L: non-linear equations, inequalities, . . .

I representable domains: e.g. boxes [x]

I resolution by contractors, CL([x])

solution

constrained domain

Constraint network:

Variables: x

Constraints:

1. L1(x)

2. L2(x)

3. . . .

Domains: X
� Contractor Programming
Chabert, Jaulin Artifical Intelligence, 2009



Set-membership methods for mobile robotics

Constraint programming: overall concept

Simon Rohou AID 2019 4 / 23

I system described by a constraint network

I variables belonging to domains X

I continuous constraints L: non-linear equations, inequalities, . . .

I representable domains: e.g. boxes [x]

I resolution by contractors, CL([x])

solution

domain X

Constraint network:

Variables: x

Constraints:

1. L1(x)

2. L2(x)

3. . . .

Domains: X
� Contractor Programming
Chabert, Jaulin Artifical Intelligence, 2009



Set-membership methods for mobile robotics

Constraint programming: overall concept

Simon Rohou AID 2019 4 / 23

I system described by a constraint network

I variables belonging to domains X

I continuous constraints L: non-linear equations, inequalities, . . .
I representable domains: e.g. boxes [x]

I resolution by contractors, CL([x])

solution

box domain [x]

Constraint network:

Variables: x

Constraints:

1. L1(x)

2. L2(x)

3. . . .

Domains: [x]
� Contractor Programming
Chabert, Jaulin Artifical Intelligence, 2009



Set-membership methods for mobile robotics

Constraint programming: overall concept

Simon Rohou AID 2019 4 / 23

I system described by a constraint network

I variables belonging to domains X

I continuous constraints L: non-linear equations, inequalities, . . .
I representable domains: e.g. boxes [x]

I resolution by contractors, CL([x])

solution

box domain C
(
[x]
)

Constraint network:

Variables: x

Constraints:

1. L1(x)

2. L2(x)

3. . . .

Domains: [x]
� Contractor Programming
Chabert, Jaulin Artifical Intelligence, 2009



Set-membership methods for mobile robotics

Constraint programming: overall concept

Simon Rohou AID 2019 4 / 23

I system described by a constraint network

I variables belonging to domains X

I continuous constraints L: non-linear equations, inequalities, . . .
I representable domains: e.g. boxes [x]

I resolution by contractors, CL([x])

solution

box domain C
(
[x]
)

Constraint network:

Variables: x

Constraints:

1. L1(x)

2. L2(x)

3. . . .

Domains: [x]
� Contractor Programming
Chabert, Jaulin Artifical Intelligence, 2009



Set-membership methods for mobile robotics

Wrappers

I box

I ellipse
I paving
I polygon
I ...
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Set-membership methods for mobile robotics

Set-membership state estimation

Three observations ρ(k) from three beacons B(k):
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Set-membership methods for mobile robotics

Constraints
Observation constraint, links a measurement ρ(k) to the state x:

L(k)g : ρ(k) =

√(
x1 − B(k)1

)2
+
(
x2 − B(k)2

)2
.

Problem synthesized as a constraint network:

Variables: x, ρ(1), ρ(2), ρ(3)

Constraints:

1. L(1)g

(
x, ρ(1)

)
2. L(2)g

(
x, ρ(2)

)
3. L(3)g

(
x, ρ(3)

)
Domains: [x], [ρ(1)], [ρ(2)], [ρ(3)]
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Set-membership methods for mobile robotics

Fixed point propagations
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� Study of robust set estimation methods for a high integrity multi-sensor localization.

Vincent Drevelle Thesis, 2011
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Set-membership methods for mobile robotics

Fixed point propagations
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� Study of robust set estimation methods for a high integrity multi-sensor localization.

Vincent Drevelle Thesis, 2011



Set-membership methods for mobile robotics

Constraint programming for mobile robotics

Constraint programming coupled with mobile robotics:

I robot’s state vector x to be estimated

I several proprioceptive/exteroceptive measurements

=⇒ more constraints than unknowns

Assets:

I no need for linearization

I safety of systems:
reliable outputs

I useful for numerical proofs

Drawbacks:

I unwanted pessimism

I sets as outputs
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Sets from sensor data

Video
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Set-membership methods for mobile robotics

Sets from sensor data

Uncertainties:
I datasheets =⇒ standard deviation σ for each sensor
I 95% confidence rate: v∗1 ∈ [v1] = [v1 − 2σ, v1 + 2σ]

0.683

0.954

v1 − 2σ v1 − σ v1

v1 v1

v

I uncertainties then reliably propagated in the system
ex: [x] + [y] =

[
x+ y, x+ y

]
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Set-membership methods for mobile robotics

Example: velocity sensing
East velocity given by DVL + IMU:
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I new variable: trajectory x(·)
I new domain (set): tube [x](·), interval of trajectories
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Set-membership methods for mobile robotics

Dynamic state estimation
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
ẋ(t) = f

(
x(t),u(t)

)

ẋ(t) = v(t)

x(t0) ∈ [x0]

ẋ(t) = f
(
x(t),u(t)

)
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ẋ(t) = f
(
x(t),u(t)

)

Simon Rohou AID 2019 13 / 23



Set-membership methods for mobile robotics

Derivative constraint

Differential constraint:
I ẋ(·) = v(·)
I one trajectory and its

derivative

Contractor programming:

C d
dt

(
[x](·), [v](·)

)

� Guaranteed computation of robot
trajectories

Rohou, Jaulin, Mihaylova, Le Bars, Veres

Robotics and Autonomous Systems, 2017
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Set-membership methods for mobile robotics

Dynamic state estimation

Considering range-only measurements from a known beacon.
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Non-linear state
estimation:

{
ẋ(t) = f

(
x(t),u(t)

)
yi = g

(
x(ti)

)
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Set-membership methods for mobile robotics

Exteroceptive measurements
Creating another tube [g](·) that will be constrained by measurements.
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Observation tube, considering 1 range-only measurement from the beacon.

Then the state tube [x](·) will be constrained by [g](·).

Lg : g(·) =
√(

x1(·)− B1
)2

+
(
x2(·)− B2

)2
.

Simon Rohou AID 2019 16 / 23



Set-membership methods for mobile robotics

Exteroceptive measurements
Creating another tube [g](·) that will be constrained by measurements.

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700180

200

220

240

260

280

300

320

340

360

380

400

t

g(·)

Observation tube, considering 2 range-only measurements from the beacon.

Then the state tube [x](·) will be constrained by [g](·).

Lg : g(·) =
√(

x1(·)− B1
)2

+
(
x2(·)− B2

)2
.

Simon Rohou AID 2019 16 / 23



Set-membership methods for mobile robotics

Exteroceptive measurements
Creating another tube [g](·) that will be constrained by measurements.

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700180

200

220

240

260

280

300

320

340

360

380

400

t

g(·)

Observation tube, considering 3 range-only measurements from the beacon.

Then the state tube [x](·) will be constrained by [g](·).

Lg : g(·) =
√(

x1(·)− B1
)2

+
(
x2(·)− B2

)2
.

Simon Rohou AID 2019 16 / 23



Set-membership methods for mobile robotics

Exteroceptive measurements
Creating another tube [g](·) that will be constrained by measurements.

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700180

200

220

240

260

280

300

320

340

360

380

400

t

g(·)

Observation tube, considering 4 range-only measurements from the beacon.

Then the state tube [x](·) will be constrained by [g](·).

Lg : g(·) =
√(

x1(·)− B1
)2

+
(
x2(·)− B2

)2
.

Simon Rohou AID 2019 16 / 23



Set-membership methods for mobile robotics

Exteroceptive measurements
Creating another tube [g](·) that will be constrained by measurements.

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700180

200

220

240

260

280

300

320

340

360

380

400

t

g(·)

Observation tube, considering 5 range-only measurements from the beacon.

Then the state tube [x](·) will be constrained by [g](·).

Lg : g(·) =
√(

x1(·)− B1
)2

+
(
x2(·)− B2

)2
.

Simon Rohou AID 2019 16 / 23



Set-membership methods for mobile robotics

Exteroceptive measurements
Creating another tube [g](·) that will be constrained by measurements.

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700180

200

220

240

260

280

300

320

340

360

380

400

t

g(·)

Observation tube, considering 6 range-only measurements from the beacon.
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Set-membership methods for mobile robotics

Dynamic state estimation

Considering range-only measurements from a known beacon.
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Set-membership methods for mobile robotics

Trajectory evaluation constraint

Trajectory evaluation

 z = y(t)

ẏ(·) = w(·)
t ∈ [t], z ∈ [z],y(·) ∈ [y](·),w(·) ∈ [w](·)

t

[y]

[z′]

[t′]

[t]× [z]

Contractor programming: Ceval
(
[t], [z], [y](·), [w](·)

)

� Reliable non-linear state estimation involving time uncertainties
Rohou, Jaulin, Mihaylova, Le Bars, Veres Automatica, 2018
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Set-membership methods for mobile robotics

Assets of constraint programming

I simplicity of the approach
transparent application of contractors on elementary constraints

I reliability of the results: no solution can be lost
useful for proof purposes and the safety of systems

I focus on the what instead of the how
no expertise required on how to solve a problem

I complex systems easily handled
non-linearities, differential equations, values from datasets

Tubex library: open-source library providing tools for constraint
programming over dynamical systems

http://www.simon-rohou.fr/research/tubex-lib
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Set-membership methods for mobile robotics

Towards more applications...
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Set-membership methods for mobile robotics

Localization with data association


ẋ(t) = f
(
x(t),u(t)

)
, (evolution equation)

g
(
x(ti),y(ti),m(ti)

)
= 0, (observation equation)

m(ti) ∈M. (mapped landmark constraint)
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Set-membership methods for mobile robotics

Localization with data association
Constraint m(ti) ∈M:
An observation m(ti) is related to one of the known seamarks M.

Perception of the seabed with a side-scan sonar.
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Set-membership methods for mobile robotics

Localization with data association
Constraint m(ti) ∈M:
An observation m(ti) is related to one of the known seamarks M.

Seamarks are already known with some uncertainty.
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Set-membership methods for mobile robotics

Localization with data association
Constraint m(ti) ∈M:
An observation m(ti) is related to one of the known seamarks M.

Some of the rocks may be observed by the robot with its sonar.
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Set-membership methods for mobile robotics

Localization with data association
Constraint m(ti) ∈M:
An observation m(ti) is related to one of the known seamarks M.

The position of the rock is first estimated from robot’s position estimate.
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Set-membership methods for mobile robotics

Localization with data association
Constraint m(ti) ∈M:
An observation m(ti) is related to one of the known seamarks M.

Then the position of the rock is contracted from the known map.
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Set-membership methods for mobile robotics

Localization with data association
Constraint m(ti) ∈M:
An observation m(ti) is related to one of the known seamarks M.

If the boxed-position is a singleton, then the rock is identified.
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Set-membership methods for mobile robotics

Localization with data association
Constraint m(ti) ∈M:
An observation m(ti) is related to one of the known seamarks M.

In any cases, the boxed-positions of the rocks allow localization updates.
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Localization with data association

Video
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