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Section 1

Introduction
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Tube Programming Applied to Underwater Localization

Motivations: exploration of a wide underwater area
Introduction

Underwater exploration without surfacing:
I case of very deep environments (airplanes search)
I reasons of discretion and security (military mission)

Need for localization methods based on the following constraints:

I no underwater GNSS receiver
I unstructured environment: no landmark, complex SLAM

Usual solution, dead-reckoning:
I navigation based on proprioceptive measurements
I fast drift on position estimation
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Mobile Robotics: formalization
Introduction

Robot localization = state estimation problem.
Classically, we have:{

ẋ(t) = f(x(t),u(t)) (navigation)
y(t) = g(x(t)) (measurements)

Where:

I x ∈ Rn is the state vector (position, bearing, . . . )
I u ∈ Rm is the input vector (command)
I y ∈ R is some exteroceptive measurement (e.g. bathymetry)
I f : Rn × Rm → Rn is the evolution function
I g : Rn → R is the observation function
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Tube Programming Applied to Underwater Localization

Main thread of the PhD: inter-temporal measurements
Introduction

Recalled state equations:{
ẋ(t) = f(x(t),u(t)) (navigation)
y(t) = g(x(t)) (measurements)

We focus of on some inter-temporal equation formally defined by:

h (x(t1),x(t2)) = 0 =⇒ y(t1) = y(t2)

Where:

I h : Rn × Rn → R is a function to be
defined according to the considered problem
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Inter-temp. measurements: loop-based localization
Introduction

Application #1: a robot performing loops in its trajectory.
We compare measurements made over each cross.

Inter-temporal equation:

h (x(t1),x(t2)) = 0 =⇒ y(t1) = y(t2)

Definition of h:

h (x(t1),x(t2)) = x(t1)− x(t2)
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Inter-temp. measurements: in symmetrical environments
Introduction

Application #2: localization in unknown underwater environments.
Considering a known speed of sound and linear acoustic rays:
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Inter-temp. measurements: in symmetrical environments
Introduction

Application #2: localization in unknown underwater environments.
Considering refractions (Snell-Descartes) and no knowledge on C:
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Inter-temp. measurements: in symmetrical environments
Introduction

Compensation of uncertainties with inter-temporal measurements.
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Inter-temp. measurements: in symmetrical environments
Introduction

Compensation of uncertainties with inter-temporal measurements.
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Inter-temp. measurements and set-membership methods
Introduction

Considering the inter-temporal equation:

h (x(t1),x(t2)) = 0 =⇒ y(t1) = y(t2)

Two identical measurements do not lead to equivalent states:

y(t1) = y(t2) 6=⇒ h (x(t1),x(t2))

However, two different measurements lead to different states:

y(t1) 6= y(t2) =⇒ h (x(t1),x(t2)) 6= 0

Set-membership methods is a relevant tool to consider this last
relation, relying on bounds and envelope of solutions.
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Tube Programming Applied to Underwater Localization

Objective and Motivations
Introduction
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Section 2

Interval Analysis
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Interval Analysis
Interval Analysis

An interval [x]:
I a closed and connected subset of R delimited by two bounds
I [x−, x+] = {x ∈ R | x− 6 x 6 x+}
I [x] ∈ IR

A box [x]:
I a cartesian product of n intervals
I [x] ∈ IRn
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Interval Analysis
Interval Analysis

Using intervals to enclose measurements in a guaranteed way:

0.683

0.954

µ− 2σ µ− σ µ

x x

x

Figure: An interval [x] = [x, x] computed from a Gaussian distribution to
guarantee a 95% confidence rate over a measurement µ.
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Interval Analysis
Interval Analysis

Interval analysis based on the extension of all classical real
arithmetic operators:

I +, −, ×, ÷
I ex: [x] + [y] = [x− + y−, x+ + y+]

I ex: [x]− [y] = [x− − y+, x+ − y−]

Adaptation of elementary functions such as:
I cos, exp, tan, etc.
I output is the smallest interval containing all the images of all

defined inputs through the function
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Set-membership state estimation
Interval Analysis

Recalled robot R’s state equations:

R
{

ẋ(t) = f(x(t),u(t)) (navigation)
y(t) = g(x(t)) (measurements)

Inputs and measurements given by sensors with
known uncertainties ; initial state x0 bounded:

u ∈ [u] , y ∈ [y] , x0 ∈ [x0]

Consequently with interval arithmetic,
other variables contained in intervals:

x ∈ [x] , ẋ ∈ [ẋ]

Values evolving with time are called trajectories and enclosed by tubes.
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Section 3

Tubes as Envelopes of Trajectories
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Tubes: definition
Tubes as Envelopes of Trajectories

Tube [x](·): interval of functions [x−, x+] such that ∀t ∈ R, x−(t) 6 x+(t)

x−(t) x+(t)

t

[x]

Figure: tube [x](·) enclosing an uncertain trajectory x∗(·)
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Tubes: arithmetic and contractors
Tubes as Envelopes of Trajectories

Example:
Tube arithmetic makes it possible to compute the following tubes:

[a](·) = [x](·) + [y](·)
[b](·) = sin

(
[x](·)

)
[c](·) =

∫
0
[x](τ)dτ

Contractors for tubes:
To each primitive constraint on trajectories, tubes are contracted
without removing any feasible solution.
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Tubes: minimal and non-minimal contractors
Tubes as Envelopes of Trajectories

Example:
The minimal contractor associated to the constraint
a(·) = x(·) + y(·): [a] (·)

[x] (·)
[y] (·)

 7→
 [a] (·) ∩ ([x] (·) + [y] (·))

[x] (·) ∩ ([a] (·)− [y] (·))
[y] (·) ∩ ([a] (·)− [x] (·))



Example:
The non-minimal contractor associated to the constraint
c(·) =

∫
0 x(τ)dτ :(

[x] (·)
[c] (·)

)
7→
(

[x] (·)
[c] (·) ∩

∫
0 [x] (τ) dτ

)
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Tubes programming: example
Tubes as Envelopes of Trajectories

[x]
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[y]
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[b]

t

[c]

t

a(·) = x(·) + y(·) b(·) = sin
(
x(·)
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x(τ)dτ
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Section 4

Contributions
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1st contribution of this PhD
Contributions

Guaranteed computation of robots trajectories.
We introduce a new contractor for tubes, to deal with differential
equations such as:

ẋ(t) = f(x(t), t)

This is of high interest for robotics applications in order to:
I work with sets of trajectories
I consider differential and non-linear equations
I enclose data-sets in a reliable way
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Tube Programming Applied to Underwater Localization

1st contribution of this PhD
Contributions

Application on a real sea mission (Daurade AUV)
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Figure: State estimation of an Autonomous Underwater Vehicle with
tubes (top view). Firstly, dead-recknoning with DVL measurements
(pictured in light gray). Secondly, localization thanks to two USBL values
(final estimation depicted with boxes, measurements displayed in red).
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2nd contribution of this PhD
Contributions

Dealing with time uncertainties.
We introduce a new contractor for tubes, to deal with observations
involving strong temporal uncertainties:

y1 = x(t1)
t1 ∈ [t1]
y1 ∈ [y1]

x(·) ∈ [x](·)

This provides:
I a reliable tool to contract a tube
I a new approach to consider time uncertainties
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Tube Programming Applied to Underwater Localization

2nd contribution of this PhD
Contributions

Contractor based on the observation [y1] made at time [t1].

[y1]

[t1]
t

[x]

Figure: tube [x](·) before contraction
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2nd contribution of this PhD
Contributions

Contractor based on the observation [y1] made at time [t1].
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Figure: contraction of tube [x](·) and both [y1] and [t1]
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2nd contribution of this PhD
Contributions

Contractor based on the observation [y1] made at time [t1].

[y1]

[t1]
t

[x]

Figure: tube contraction in forward
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2nd contribution of this PhD
Contributions

Contractor based on the observation [y1] made at time [t1].
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Figure: tube contraction in forward/backward
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3rd contribution of this PhD
Contributions

Loop-based localization method.
We introduce a new state estimation method for AUVs:{

ẋ(t) = f(x(t),u(t))
y(t) = g(x(t))

Considering the inter-temporal equation formally defined by:

y(t1) 6= y(t2) =⇒ x(t1) 6= x(t2)

This provides:
I a competitive method for underwater localization in wide

unstructured environments
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Tube Programming Applied to Underwater Localization

3rd contribution of this PhD
Contributions

Figure: Daurade AUV managed by DGA Techniques Navales Brest and
the Service Hydrographique et Océanographique de la Marine, during an
experiment in the Rade de Brest, October 2015.
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3rd contribution of this PhD
Contributions

Application on a real sea mission (Daurade AUV)

Figure: Loop-based localization applied on a real dataset – robot
localization with bathymetric measurements
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Other contributions of this PhD
Contributions

Some on-going works:
I wreck based localization

time uncertainties, side scan sonar, boats wrecks
I robot localization in an unknown but symmetric

environment
symmetries, t-planes, unknown sound celerity profiles

I new optimal loop existence test
topological degree test, collaboration with Peter Franek

I range-only localization with unknown bias
method for both robot localization and bias estimation

I robot collaborative exploration: walking strategy
stack of AUVs, anchors, explorers, steps
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Conclusion

3 equations, 3 main contributions:
ẋ(t) = f(x(t),u(t)) (navigation)
y(t) = g(x(t)) (measurements)
y(t1) 6= y(t2) =⇒ h (x(t1),x(t2)) 6= 0 (inter-temporality)

Applied on real underwater robot localization problems.
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