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In real conditions, performances depend on: 

Sound propagation: Salinity, Pressure , Temperature

Laser: Turbidity , Color , Light conditions, Water Type

Camera: Turbidity , Light conditions, Water Type, Environment’s textures
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Tank datasets

In-air and underwater, 2 trajectory types, 3 different Illumination conditions 
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Tank datasets

2 Medium, 2 Trajectory types, 3 different Illumination conditions 
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Light Impact on the Medium

a) sunlight illuminated 
scene
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Depth
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Forward looking depth estimators!



Results: Tank in-air
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In air the SLAM approaches work 
!

- except w/ forward 

looking neural depth 

estimators

- Colmap-depth shows that 

approaches can work w/ 

correct depth



Results: Tank with Homogeneous Illumination
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- Depth estimators not 
adapted 

- Photometric methods 
like LSD-SLAM 
cannot work in low 
light conditions 

Only ORB-SLAMs pipeline
were effectives :



Results: Tank with Artificial and Mixed Illumination
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No pipeline was effective on 
mixed and artificial illuminated 

datasets

Features found near the light 
cones boundaries

No movement detected for the 
features
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- light conditions

- low texture environments
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No pipeline was effective :

- light conditions

- low texture environments

      SLAM is solved in air!
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● Real mission conditions are still challenging:

- water quality 

- light conditions 

- scattering medium

● Initialization trajectory has an impact on the slam quality 

● Tradeoff between altitude, consistency of the data and energy

- good overlap and visibility =>  more time to finish the path

● Lack of tow-down depth estimators
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● Employ physical based methods to undo water and lights

● Add inertial measurements

● Use deep learning feature detector/descriptor/matching 

○ ex loFTR

● Use other types of SLAM methods 

○ SuperPoint SLAM

○ GCvN2 SLAM
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● Employ physical based methods to undo water and lights

● Add inertial measurements

● Use deep learning feature detector/descriptor/matching

● Use other types of SLAM methods 

Enhance the part of the image in the range of the 
light cones 

Work with a portion of the image in the cones 
intersection
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Thank you!

michelegrmld@gmail.com
https://www.linkedin.com/in/michele-
grimaldi-33a473132/ 

https://www.linkedin.com/in/michele-grimaldi-33a473132/
https://www.linkedin.com/in/michele-grimaldi-33a473132/

