

MSc. Michele Grimaldi

Visiting Research Scientist at University of Girona

Incoming PhD Student in Underwater Robotics Heriot Watt University The National Robotarium University of Girona

Supervisors: Prof. Yvan R. Petillot, Dr. Ignacio Carlucho, Prof.Pere Ridao Rodriguez

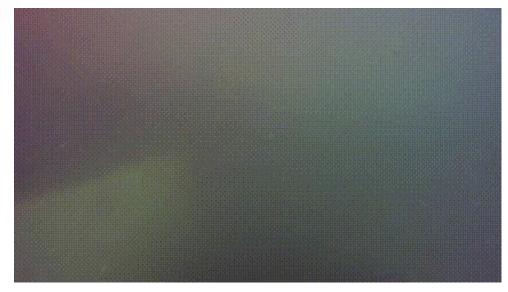
(1) C A U

Kiel University Christian-Albrechts-Universität zu Kiel

(2)

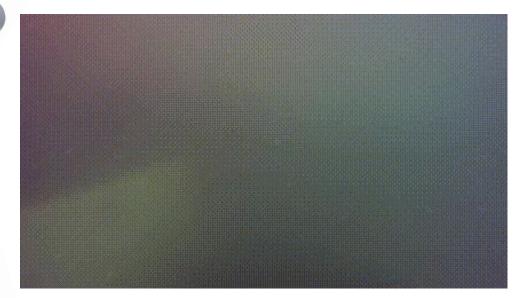
(3) Universitat de Girona INVESTIGATION OF THE CHALLENGES OF UNDERWATER-VISUAL-MONOCULAR-SLAM Best Paper Award at ISPRS GSW 2023

Michele Grimaldi^{2,3}, David Nakath^{1,2}, Mengkun She^{1,2}, Kevin Köser^{1,2}



Kiel University Christian-Albrechts-Universität zu Kiel

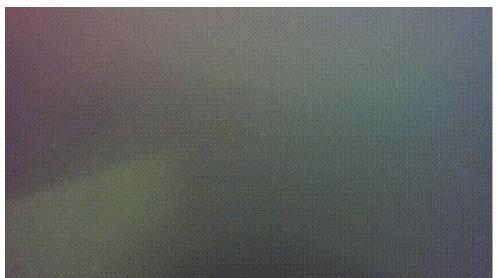
Pilot structure in Viana do Castelo, Portugal (ATLANTIS H2020)



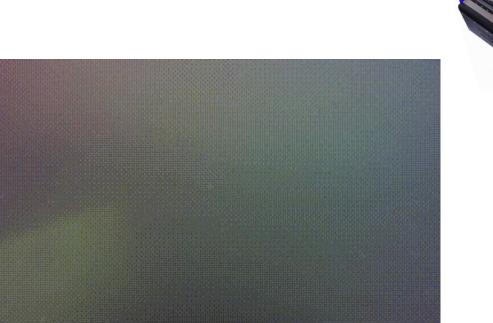
Kiel University Christian-Albrechts-Universität zu Kiel

Universitat de Girona

Pilot structure in Viana do Castelo, Portugal (ATLANTIS H2020)


CAU

Kiel University Christian-Albrechts-Universität zu Kiel


Universitat de Girona

Pilot structure in Viana do Castelo, Portugal (ATLANTIS H2020)

Kiel University Christian-Albrechts-Universität zu Kiel

Universitat de Girona

Pilot structure in Viana do Castelo, Portugal (ATLANTIS H2020)

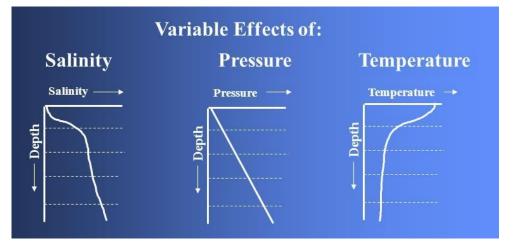


Kiel University Christian-Albrechts-Universität zu Kiel

VICOROB pool, ATLANTIS and OPTHIROV projects

Kiel University Christian-Albrechts-Universität zu Kiel

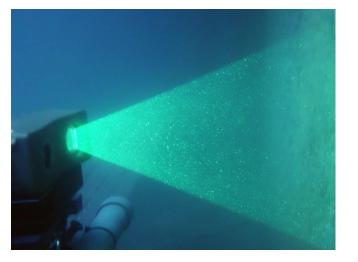
VICOROB pool, ATLANTIS and OPTHIROV projects


In real conditions, performances depend on:

Sound propagation: Salinity, Pressure, Temperature

CAU

In real conditions, performances depend on:


Sound propagation: Salinity, Pressure, Temperature

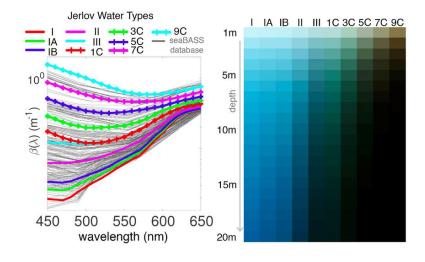
Laser: Turbidity, Color, Light conditions, Water Type

CAU

In real conditions, performances depend on:

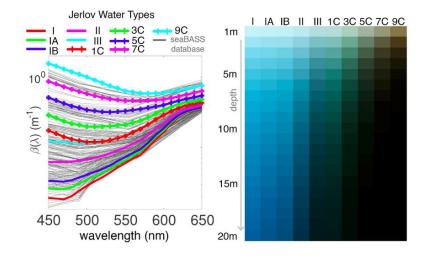
Sound propagation: Salinity, Pressure, Temperature

Laser: Turbidity, Color, Light conditions, Water Type

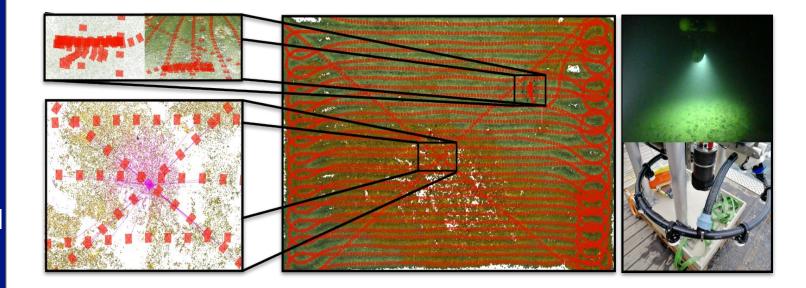

Camera: Turbidity, Light conditions, Water Type, Environment's textures / reflectivity

In real conditions, performances depend on:

Sound propagation: Salinity, Pressure, Temperature


Laser: Turbidity , Color , Light conditions, Water Type

Camera: Tubelity, Light conditions, Water Type, Environment's textures



Real mission datasets

CAU

Kiel University Christian-Albrechts-Universität zu Kiel

3 Datasets, 3 different conditions with GIRONA 500 ANTON and LUISE (GEOMAR)

Real mission datasets

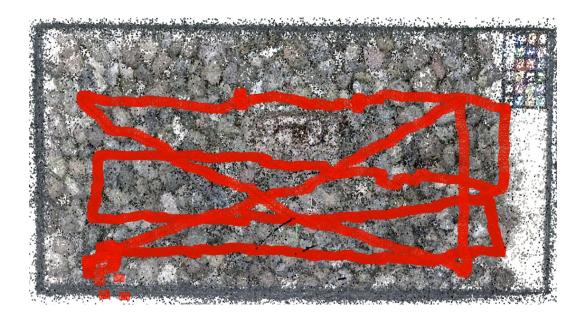
Kiel University Christian-Albrechts-Universität zu Kiel

3 Datasets, 3 different conditions with GIRONA 500 ANTON and LUISE (GEOMAR)

Tank datasets

U

In-air and underwater, 2 trajectory types, 3 different Illumination conditions


Tank datasets

Kiel University Christian-Albrechts-Universität zu Kiel

2 Medium, 2 Trajectory types, 3 different Illumination conditions

Universitat de Girona

U

GEOMAR

Kiel University Christian-Albrechts-Universität zu Kiel

С

Light Impact on the Medium

a) sunlight illuminated scene

Light Impact on the Medium

- a) sunlight illuminated scene
- b) mixed light illuminated scene

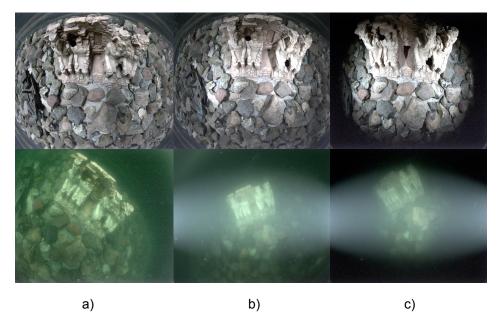
b)

Kiel University Christian-Albrechts-Universität zu Kiel

Universitat de Girona

Light Impact on the Medium

- sunlight illuminated a) scene
- mixed light illuminated b) scene
- C) artificial light illuminated scene


U

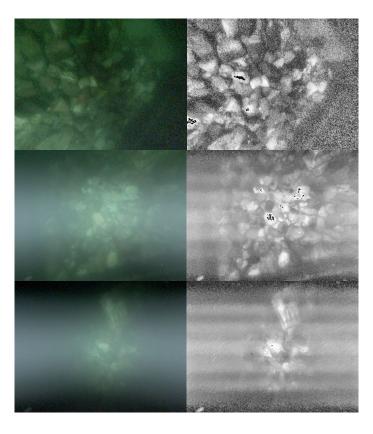
GEOMAR

Universitat de Girona

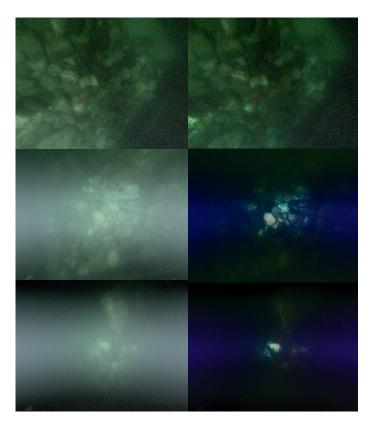
Kiel University Christian-Albrechts-Universität zu Kiel

С

c)


Statistics:

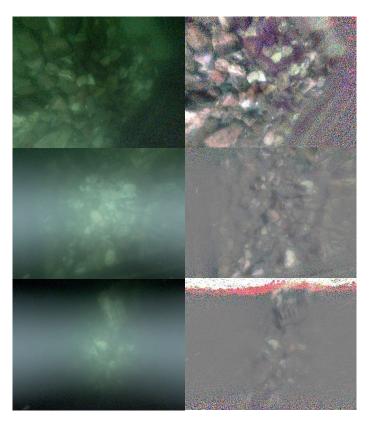
1) CLAHE


Statistics:

CLAHE
 UDCP

Statistics:

CLAHE
 UDCP


Heuristics:

3) Median-heuristic (Köser, 2020)

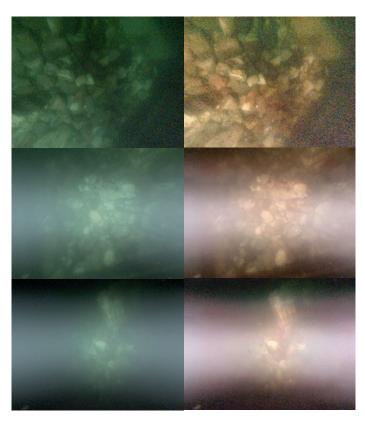
CAU

Statistics:

CLAHE
 UDCP

Heuristics:

3) Median-heuristic (Köser, 2020)


CAU

Kiel University Christian-Albrechts-Universität zu Kiel

GEOMAR

Universitat de Girona 4) UWGAN -> Water type 1

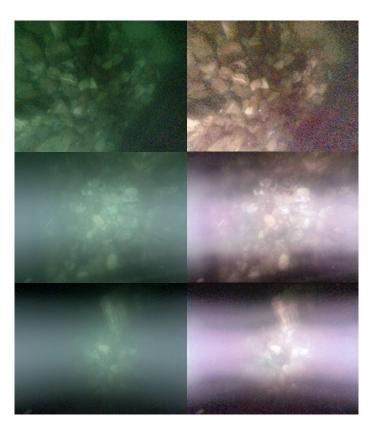
Machine Learning:

Statistics:

CLAHE
 UDCP

Machine Learning:

Heuristics:


3) Median-heuristic (Köser, 2020)

CAU

Kiel University Christian-Albrechts-Universität zu Kiel

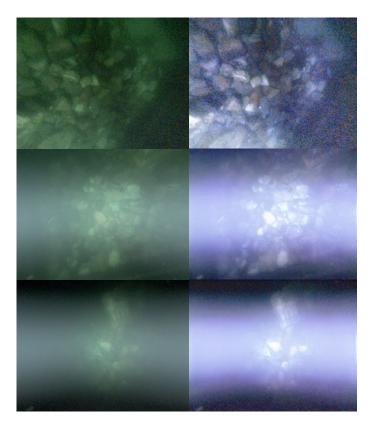
Universitat de Girona 4) UWGAN -> Water type 1
5) UWGAN -> Water type 2

Statistics:

CLAHE 1) 2) UDCP

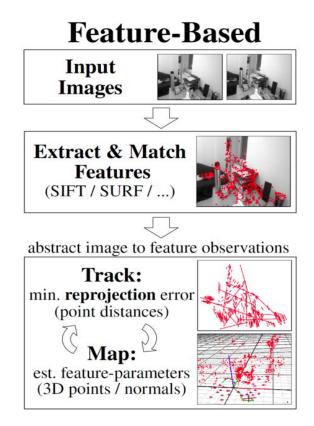
Machine Learning:

Heuristics:

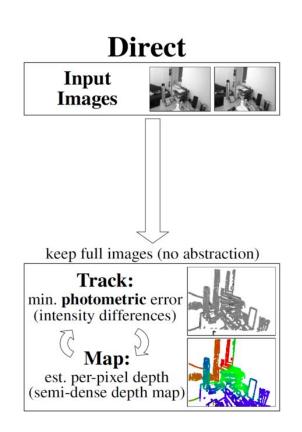

3) Median-heuristic (Köser, 2020)

U

- UWGAN -> Water type 1 4) 5) UWGAN -> Water type 2 6)
 - UWGAN -> Water type 3

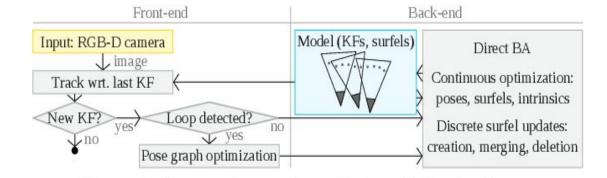


- 1) ORB SLAM 2
- 2) ORB SLAM 3

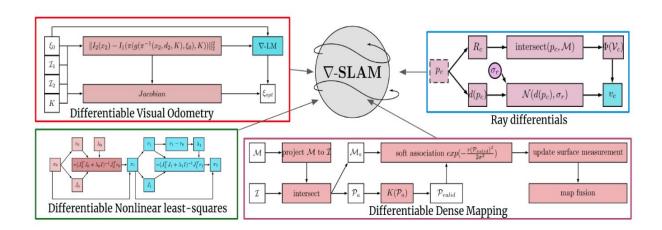

CAU

- 1) ORB SLAM 2
- 2) ORB SLAM 3
- 3) LSD SLAM

CAU

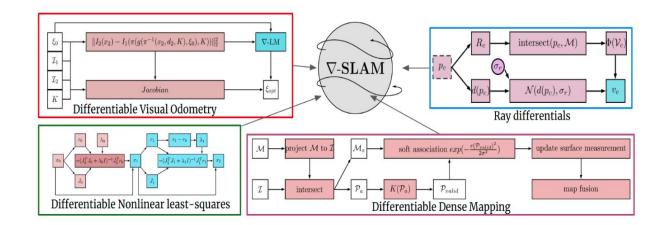


- 1) ORB SLAM 2
- 2) ORB SLAM 3
- 3) LSD SLAM
- 4) BADSLAM



- 1) ORB SLAM 2
- 2) ORB SLAM 3
- 3) LSD SLAM
- 4) BADSLAM
- 5) GRADSLAM

CAU



- 2) ORB SLAM 3
- 3) LSD SLAM

Depth

C A U Kiel University Christian-Albrechts-Universität zu Kiel

Universitat de Girona

Depth Map Estimation

In-Air :

- 1) MonoDepth2 (Godard, ICCV 2019)
- 2) Colmap

CAU

Depth Map Estimation

In-Air :

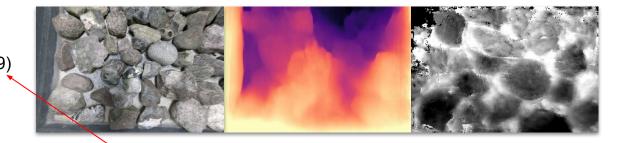
- 1) MonoDepth2 (Godard, ICCV 2019)
- 2) Colmap

CAU

GEOMAR

Universitat de Girona

Underwater :


- 1) UW-Net (Gupta , ICIP 2019)
 - UDepth (Yu, ICRA 2023)
- 3) Colmap

Depth Map Estimation

In-Air :

- 1) MonoDepth2 (Godard, ICCV 2019)
- 2) Colmap

CAU

GEOMAR

Universitat de Girona

Kiel University Christian-Albrechts-Universität zu Kiel

Underwater :

1)

- UW-Net (Gupta , ICIP 2019)
- 2) UDepth (Yu, ICRA 2023)
- 3) Colmap

Results: Tank in-air

T1-7, Tank in-air							
	T 1	T 2	T 3	T 4	T 5	T 6	T 7
ORB-SLAM2	1.68° 0.09	1.31° 0.08	2.12° 0.12	1.68° 0.10	$2.47^{\circ} 0.15$	$2.23^{\circ} 0.21$	2.54° 0.16
ORB-SLAM3	$1.60^{\circ} 0.09$	1.23° 0.07	$2.94^{\circ} 0.17$	1.92° 0.12	$2.27^{\circ} 0.14$	2.22° 0.30	2.23° 0.29
LSD-SLAM	$1.89^{\circ} 0.10$	1.68° 0.09	1.98° 0.20	$2.20^{\circ} 0.24$	1.87° 0.20	FAILED	FAILED
BADSLAM (Monodepth2)	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED
BADSLAM (Colmap)	1.38° 0.08	$1.47^{\circ} 0.11$	1.87° 0.12	$1.94^{\circ} 0.20$	2.09° 0.25	$2.07^{\circ} 0.19$	2.17° 0.23
GRADSLAM (Monodepth2)	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED
GRADSLAM (Colmap)	1.45° 0.12	1.42° 0.13	2.10° 0.15	2.22° 0.17	2.3° 0.27	2.28° 0.24	2.41° 0.28

In air the SLAM approaches work

- except w/ forward

looking neural depth

estimators

ï

- Colmap-depth shows that

approaches can work w/

correct depth

Results: Tank with Homogeneous Illumination

T8, Water Tank, homogenous illumination, lawn mower								
	Base	CLAHE	UDCP	UW-GAN Water 1	UW-GAN Water 2	UW-GAN Water 3	Median	
ORB-SLAM2	3.5° 1.42	2.2° 1.28	3.12° 1.41	4.0° 1.52	4.1° 1.53	$3.9^{\circ} 1.61$	NOT INIT	
ORB-SLAM3	4.5 1.61	3 1.19	2.6°[1.51	3.3 1.54	3.8° 1.50	3.3°[1.59	NOT INIT	
BADSLAM (UDepth)	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED	
BADSLAM (UW-Net)	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED	
LSD-SLAM	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED	
GRADSLAM(UDepth)	FAILED	NA	FAILED	FAILED	FAILED	FAILED	FAILED	
GRADSLAM(UW-Net)	FAILED	NA	FAILED	FAILED	FAILED	FAILED	FAILED	

T9, Water Tank, homogenous illumination, scanning trajectory

2.7° 1.47

 $2.62^{\circ}|1.49$

FAILED

FAILED

FAILED

FAILED

FAILED

UDCP UW-GAN Water 1 UW-GAN Water 2 UW-GAN W

2.8° 1.46

3.32° 1.59

FAILED

FAILED

FAILED

FAILED

FAILED

FAILED

FAILED

Base

BADSLAM (UDepth) FAILED FAILED FAILED

BADSLAM (UW-Net) FAILED FAILED FAILED

ORB-SLAM2

ORB-SLAM3

LSD-SLAM

GRADSLAM(UDepth) FAILED

GRADSLAM(UW-Net) FAILED

CLAHE

2.7° 1.34 2.2° 1.26 2.2° 1.52

2.9° 1.53 1.8° 1.24 2.6° 1.51

FAILED FAILED FAILED

NA

NA

FAILED

FAILED

Only ORB-SLAMs pipeline were effectives :

 Depth estimators not adapted

-GAN Water 3	Median	- Photometric methods
2.9° 1.61	NOT INIT	like LSD-SLAM
$2.9^{\circ} 1.47$	NOT INIT	cannot work in low
FAILED	FAILED	
FAILED	FAILED	light conditions
FAILED	FAILED	ingrit contaitionio
FAILED	FAILED	

~		
	A	

Kiel University Christian-Albrechts-Universität zu Kiel

Universitat de Girona

Results: Tank with Artificial and Mixed Illumination

No pipeline was effective on mixed and artificial illuminated datasets

Features found near the light cones boundaries

CIAU

Kiel University Christian-Albrechts-Universität zu Kiel

Universitat de Girona

No movement detected for the features

T13, Water Tank, artificial illumination, scanning trajectory							
-	Base	CLAHE	UDCP	UW-GAN Water 1	UW-GAN Water 2	UW-GAN Water 3	Median
ORB-SLAM2	NOT INIT	TR-Lost	NOT INIT	NOT INIT	NOT INIT	NOT INIT	NOT INIT
ORB-SLAM3	NOT INIT	TR-Lost	NOT INIT	NOT INIT	NOT INIT	NOT INIT	NOT INIT
BADSLAM (UDepth)	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED
BADSLAM (UW-Net)	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED
LSD-SLAM	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED
GRADSLAM(UDepth)	FAILED	NA	FAILED	FAILED	FAILED	FAILED	FAILED
GRADSLAM(UW-Net)	FAILED	NA	FAILED	FAILED	FAILED	FAILED	FAILED

T11, Water Tank, mixed illumination, scanning trajectory							
	Base	CLAHE	UDCP	UW-GAN Water 1	UW-GAN Water 2	UW-GAN Water 3	Median
ORB-SLAM2	NOT INIT	TR-Lost	NOT INIT	NOT INIT	NOT INIT	NOT INIT	NOT INIT
ORB-SLAM3	NOT INIT	TR-Lost	NOT INIT	NOT INIT	NOT INIT	NOT INIT	NOT INIT
BADSLAM (UDepth)	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED	NOT INIT
BADSLAM (UW-Net)	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED
LSD-SLAM	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED
GRADSLAM(UDepth)	FAILED	NA	FAILED	FAILED	FAILED	FAILED	FAILED
GRADSLAM(UW-Net)	FAILED	NA	FAILED	FAILED	FAILED	FAILED	FAILED

Results: Real Missions

A1, Real mission w/ Girona 500 AUV										
	Base	CLAHE	UDCP	UW-GAN Water 1	UW-GAN Water 2	UW-GAN Water 3	Median			
ORB-SLAM2	TR-Lost	TR-Lost	TR-Lost	TR-Lost	TR-Lost	TR-Lost	TR-Lost			
ORB-SLAM3	TR-Lost	TR-Lost	TR-Lost	TR-Lost	TR-Lost	TR-Lost	TR-Lost			
BADSLAM (UDepth)	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED			
BADSLAM (UW-Net)	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED			
BADSLAM (Colmap)	TR-Lost	TR-Lost	TR-Lost	TR-Lost	TR-Lost	TR-Lost	TR-Lost			
LSD-SLAM	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED			
GRADSLAM(UDepth)	FAILED	NA	FAILED	FAILED	FAILED	FAILED	FAILED			
GRADSLAM(UW-Net)	FAILED	NA	FAILED	FAILED	FAILED	FAILED	FAILED			
GRADSLAM(Colmap)	FAILED	NA	FAILED	FAILED	FAILED	FAILED	FAILED			

A2, Real mission w/ Girona 500 AUV										
	Base	CLAHE	UDCP	UW-GAN Water 1	UW-GAN Water 2	UW-GAN Water 3	Median			
ORB-SLAM2	NOT INIT	TR-Lost	TR-Lost	NOT INIT	NOT INIT	NOT INIT	TR-Los			
ORB-SLAM3	NOT INIT	TR-Lost	NOT INIT	NOT INIT	NOT INIT	NOT INIT	TR-Los			
BADSLAM (UDepth)	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED			
BADSLAM (UW-Net)	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED			
BADSLAM (Colmap)	NOT INIT	TR-Lost	TR-Lost	NOT INIT	NOT INIT	NOT INIT	TR-Los			
LSD-SLAM	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED			
GRADSLAM(UDepth)	FAILED	NA	FAILED	FAILED	FAILED	FAILED	FAILED			
GRADSLAM(UW-Net)	FAILED	NA	FAILED	FAILED	FAILED	FAILED	FAILED			
GRADSLAM(Colmap)	FAILED	NA	FAILED	FAILED	FAILED	FAILED	FAILED			

Christian-Albrechts-Universität zu Kiel

U

Kiel University

	A3, Real mission w/ Girona 500 AUV										
	Base	CLAHE	UDCP	UW-GAN Water 1	UW-GAN Water 2	UW-GAN Water 3	Median				
ORB-SLAM2	TR-Lost	TR-Lost	TR-Lost	TR-Lost	TR-Lost	TR-Lost	TR-Los				
ORB-SLAM3	TR-Lost	TR-Lost	TR-Lost	TR-Lost	TR-Lost	TR-Lost	TR-Los				
BADSLAM (UDepth)	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED				
BADSLAM (UW-Net)	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED				
BADSLAM (Colmap)	TR-Lost	TR-Lost	TR-Lost	TR-Lost	TR-Lost	TR-Lost	TR-Los				
LSD-SLAM	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED				
GRADSLAM(UDepth)	FAILED	NA	FAILED	FAILED	FAILED	FAILED	FAILED				
GRADSLAM(UW-Net)	FAILED	NA	FAILED	FAILED	FAILED	FAILED	FAILED				
GRADSLAM(Colmap)	FAILED	NA	FAILED	FAILED	FAILED	FAILED	FAILED				

No pipeline was effective :

- light conditions
- low texture environments

Results: Real Missions

A1, Real mission w/ Girona 500 AUV										
	Base	CLAHE	UDCP	UW-GAN Water 1	UW-GAN Water 2	UW-GAN Water 3	Median			
ORB-SLAM2	TR-Lost	TR-Lost	TR-Lost	TR-Lost	TR-Lost	TR-Lost	TR-Lost			
ORB-SLAM3	TR-Lost	TR-Lost	TR-Lost	TR-Lost	TR-Lost	TR-Lost	TR-Lost			
BADSLAM (UDepth)	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED			
BADSLAM (UW-Net)	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED			
BADSLAM (Colmap)	TR-Lost	TR-Lost	TR-Lost	TR-Lost	TR-Lost	TR-Lost	TR-Lost			
LSD-SLAM	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED			
GRADSLAM(UDepth)	FAILED	NA	FAILED	FAILED	FAILED	FAILED	FAILED			
GRADSLAM(UW-Net)	FAILED	NA	FAILED	FAILED	FAILED	FAILED	FAILED			
GRADSLAM(Colmap)	FAILED	NA	FAILED	FAILED	FAILED	FAILED	FAILED			

A2, Real mission w/ Girona 500 AUV									
	Base	CLAHE	UDCP	UW-GAN Water 1	UW-GAN Water 2	UW-GAN Water 3	Median		
ORB-SLAM2	NOT INIT	TR-Lost	TR-Lost	NOT INIT	NOT INIT	NOT INIT	TR-Lost		
ORB-SLAM3	NOT INIT	TR-Lost	NOT INIT	NOT INIT	NOT INIT	NOT INIT	TR-Lost		
BADSLAM (UDepth)	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED		
BADSLAM (UW-Net)	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED		
BADSLAM (Colmap)	NOT INIT	TR-Lost	TR-Lost	NOT INIT	NOT INIT	NOT INIT	TR-Lost		
LSD-SLAM	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED		
GRADSLAM(UDepth)	FAILED	NA	FAILED	FAILED	FAILED	FAILED	FAILED		
GRADSLAM(UW-Net)	FAILED	NA	FAILED	FAILED	FAILED	FAILED	FAILED		
GRADSLAM(Colmap)	FAILED	NA	FAILED	FAILED	FAILED	FAILED	FAILED		

Christian-Albrechts-Universität zu Kiel

U

Kiel University

A3, Real mission w/ Girona 500 AUV										
	Base	CLAHE	UDCP	UW-GAN Water 1	UW-GAN Water 2	UW-GAN Water 3	Median			
ORB-SLAM2	TR-Lost	TR-Lost	TR-Lost	TR-Lost	TR-Lost	TR-Lost	TR-Los			
ORB-SLAM3	TR-Lost	TR-Lost	TR-Lost	TR-Lost	TR-Lost	TR-Lost	TR-Los			
BADSLAM (UDepth)	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED			
BADSLAM (UW-Net)	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED			
BADSLAM (Colmap)	TR-Lost	TR-Lost	TR-Lost	TR-Lost	TR-Lost	TR-Lost	TR-Lost			
LSD-SLAM	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED	FAILED			
GRADSLAM(UDepth)	FAILED	NA	FAILED	FAILED	FAILED	FAILED	FAILED			
GRADSLAM(UW-Net)	FAILED	NA	FAILED	FAILED	FAILED	FAILED	FAILED			
GRADSLAM(Colmap)	FAILED	NA	FAILED	FAILED	FAILED	FAILED	FAILED			

No pipeline was effective :

- light conditions
- low texture environments

SLAM is solved in air!

- Real mission conditions are still challenging:
 - water quality
 - light conditions

- Real mission conditions are still challenging:
 - water quality
 - light conditions
 - scattering medium
- Initialization trajectory has an impact on the slam quality

- Real mission conditions are still challenging:
 - water quality
 - light conditions
 - scattering medium
- Initialization trajectory has an impact on the slam quality
- Tradeoff between altitude, consistency of the data and energy
 - good overlap and visibility => more time to finish the path

CAU

- Real mission conditions are still challenging:
 - water quality
 - light conditions
 - scattering medium
- Initialization trajectory has an impact on the slam quality
- Tradeoff between altitude, consistency of the data and energy
 - good overlap and visibility => more time to finish the path
- Lack of tow-down depth estimators

CAU

- Employ physical based methods to undo water and lights
 - ex Sea-Thru (Akkaynak, CVPR 2018)
 - Inverse Rendering (Nakath et al. CVPRws 2021)

- Employ physical based methods to undo water and lights
 - ex Sea-Thru (Akkaynak, CVPR 2018)
 - Inverse Rendering (Nakath et al. CVPRws 2021)

=> Then do a downward looking depth estimator w/ a water estimator as **both** values are interdependent and should be estimated together.

- Employ physical based methods to undo water and lights
 - ex Sea-Thru (Akkaynak, CVPR 2018)
 - Inverse Rendering (Nakath et al. CVPRws 2021)

=> Then do a downward looking depth estimator w/ a water estimator as **both** values are interdependent and should be estimated together.

Then preprocessed images can bring the SLAM performance back to the in-air case!

CAU

- Employ physical based methods to undo water and lights
 - ex Sea-Thru (Akkaynak, CVPR 2018)
 - Inverse Rendering (Nakath et al. CVPRws 2021)

=> Then do a downward looking depth estimator w/ a water estimator as **both** values are interdependent and should be estimated together.

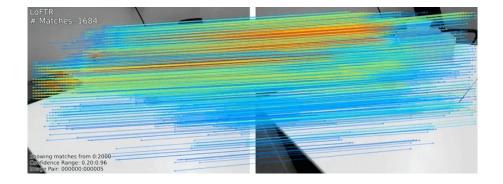
Then preprocessed images can bring the SLAM performance back to the in-air case!

• Employ physical based methods to undo water and lights

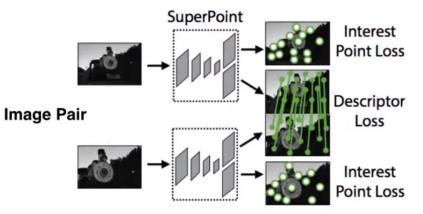
IMU _


• Add inertial measurements

Kiel University Christian-Albrechts-Universität zu Kiel


(a) Camera top view

- Employ physical based methods to undo water and lights
- Add inertial measurements
- Use deep learning feature detector/descriptor/matching
 - ex IoFTR (effective on low texture environments)



- Employ physical based methods to undo water and lights
- Add inertial measurements
- Use deep learning feature detector/descriptor/matching
 - $\circ \quad \text{ ex IoFTR} \quad$
- Use other types of SLAM methods
 - SuperPoint SLAM
 - GCvN2 SLAM

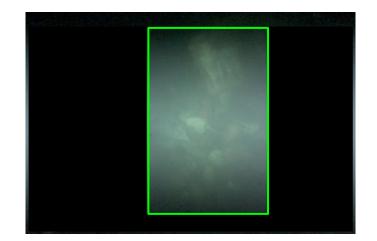
CAU

- Employ physical based methods to undo water and lights
- Add inertial measurements
- Use deep learning feature detector/descriptor/matching
- Use other types of SLAM methods

Kiel University Christian-Albrechts-Universität zu Kiel

Enhance the part of the image in the range of the light cones

- Employ physical based methods to undo water and lights
- Add inertial measurements
- Use deep learning feature detector/descriptor/matching
- Use other types of SLAM methods


CAU

Kiel University Christian-Albrechts-Universität zu Kiel

GEOMAR

Universitat de Girona Enhance the part of the image in the range of the light cones

Work with a portion of the image in the cones intersection

Kiel University Christian-Albrechts-Universität zu Kiel

Universitat de Girona michelegrmld@gmail.com https://www.linkedin.com/in/michelegrimaldi-33a473132/

Thank you!