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Model, residual and parameter estimation Standard catenary model

Catenary definition
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Figure: Catenary of length L hanging
between PA and PB .

Z =
cosh (XC )− 1

C

Defined in a plane (Ov , xv , zv );
only subjected to weight;
homogeneous;
no elasticity;
no stiffness.
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Model, residual and parameter estimation Augmented catenary model
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Figure: Standard and γ-augmented catenary [Drupt et al., 2022] of length L
hanging between wPA and wPB in their respective planes.
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Model, residual and parameter estimation Augmented catenary model
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Figure: γ and θγ-augmented catenary of length L hanging between wPA and wPB

in Pγ .
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Model, residual and parameter estimation Discretization and residual

Curvilinear discretization

Figure: Normal discretization. Figure: Curvilinear discretization.

wP∗
k = (wX ∗

k ,
wY ∗

k ,
wZ ∗

k ) with ∗ ∈ (m, v , γ, θγ) and k ∈ {0, . . . , n}
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Model, residual and parameter estimation Discretization and residual

Model accuracy
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Model, residual and parameter estimation Parameters estimation

Parameters estimation
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Figure: Catenary of length L hanging between PA and PB .

C = argmin
C∈R∗

+

C 2 (L2 −∆H2)− 4
(
cosh2

(
lC

2

)
− 1

)

(γ, θ) = argmin
(γ,θ)∈[−π,π]2

εθγP (γ, θ)
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Experiments Presentation

Candidate cables

(1) (2) (3) (4)

(5) (6) (7) (8)

Figure: Pictures of the different cables used in the experiments: (1) coaxial cable;
(2) four pairs ethernet cable; (3) two pairs ethernet cable; (4) floating rope; (5)
rope; (6) weighted rope; (7) steel chain; (8) elastic rope.
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Experiments Presentation

Experimental setup

Figure: Picture of the robot and the cable while doing experiments.

The whole system is tracked at 100 Hz with a five cameras Qualisys motion
capture system.
Visual markers are on the robot and the cables spaced out by 20 cm.
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Experiments Presentation

Description of the experiments

Three experimental parameters:
1 direction of motion: surge or sway;

2 speed of the robot: 0.6 m s−1 or 0.3 m s−1;
3 initial distance between attachment points: 1.5 m or 2.0 m.

Martin F. On the relevance of catenary-based models for underwater tethered robots 15/12/23 15/20



Experiments Presentation

Description of the experiments

Three experimental parameters:
1 direction of motion: surge or sway;
2 speed of the robot: 0.6 m s−1 or 0.3 m s−1;

3 initial distance between attachment points: 1.5 m or 2.0 m.

Martin F. On the relevance of catenary-based models for underwater tethered robots 15/12/23 15/20



Experiments Presentation

Description of the experiments

Three experimental parameters:
1 direction of motion: surge or sway;
2 speed of the robot: 0.6 m s−1 or 0.3 m s−1;
3 initial distance between attachment points: 1.5 m or 2.0 m.

Martin F. On the relevance of catenary-based models for underwater tethered robots 15/12/23 15/20



Experiments Presentation

Description of the experiments

−2 −1.5 −1 −0.5 0

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

xw / m

y w
/

m

surge, 0.3 m s−1, 2 m
surge, 0.6 m s−1, 2 m
sway, 0.3 m s−1, 1.5 m
sway, 0.3 m s−1, 2 m
sway, 0.6 m s−1, 1.5 m
sway, 0.6 m s−1, 2 m
fixed point

Figure: View of the trajectories for cable 6.
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Experiments Results

General results
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Figure: Accuracy of the models for each cable.
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Experiments Results

Cable specific results

Experimental parameters Box plot
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Table: Accuracy of the models for cable 3.
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Experiments Results

Single sequence results

Video!
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Experiments Results

Conclusion

The augmented catenary provides a better estimation for all cables
compared to the standard catenary;

Catenary models are most relevant for:
Cables that are flexible (no plastic deformations);
Cables that are adequately heavy (cable 6 weights 0.39 Nm−1 in
water);
Slow motion and low dynamics (for best accuracy).

Cables that fit the catenary model have the most gains from our
augmentations;
The accuracy of the augmented catenary model for duly chosen cables
can be as low as a centimeter (median, cable 6).

Current work: proposing a way to describe the dynamics of the new
degrees of freedom.
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