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Section 1

Codac in a nutshell
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The Codac library

Domains (wrappers)
Codac in a nutshell

I for reals x ∈ R, x ∈ Rn: intervals [x] and boxes [x] (IBEX)
I for trajectories x(·) : R→ R: tubes [x](·)

I for subsets X ⊂ Rn: thicksets X ∈ [X] = [X−,X+]
I etc.

Illustration of a thickset (right-hand side)
for enclosing and uncertain red set (left-hand side)

� Thick set inversion
Desrochers, Jaulin. Artificial Intelligence. Volume 249, Issue C, Pages 1-18, 2017
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The Codac library

Example of tubes and thicksets
Codac in a nutshell

� Computing a Guaranteed Approximation of the Zone Explored by a Robot
Desrochers, Jaulin. IEEE Transaction on Automatic Control. Volume 62, Issue 1, pages 425-430, 2017
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The Codac library

Codac: Catalog Of Domains And Contractors
Codac in a nutshell

Several types of domains:
I Interval, IntervalVector, IntervalMatrix (from IBEX)

I Tube, TubeVector, Slice

I Thickset

I . . .

Contractors for various constraints:

I non-linear constraints f(x) = 0

I geometric constraints: distance, polar equation, circles, . . .

I differential equations: ẋ = f(x), ẋ = Ax+Bu

I time uncertainties: y = x(t), with t ∈ [t]

I delays: x(t) = y(t− τ)
I . . .
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The Codac library

Domains for trajectories: tubes
Codac in a nutshell

·

[x](·)

t0

tfx
∗ (·
)

x+(·)

x−(·)

Example of scalar tube: interval of two trajectories
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The Codac library

Domains for trajectories: tubes
Codac in a nutshell

δ

·

[x](·)

tf

t1 t3
t0

x(·)

· δ

·

[x](·)

tf

t1 t3
t0

x(·)

·

output gate of [[x]](2)

slice [[x]](2)

Computer implementation (http://codac.io)
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The Codac library

Example of optimal contractors for the Lpolar constraint
Codac in a nutshell

Lpolar :

{
x = ρ cos θ
y = ρ sin θ

Optimally dealt with by:

Cpolar
(
[x], [y], [ρ], [θ]

)
Using Codac:

x = Interval(..)
y = Interval(..)
r = Interval(..)
theta = Interval(..)

ctc.polar.contract(x,y,r,theta)

� A Minimal contractor for the Polar equation: application to robot localization
Desrochers, Jaulin. Engineering Applications of Artificial Intelligence, 55(Supplement C):83–92, 2016
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The Codac library

Codac in a nutshell

The library is open source and available:

I in Python and C++

I on Linux, Windows, MacOS systems

I from official packages:
Python package: pip install codac
Debian in progress..: sudo apt install libcodac

http://www.codac.io
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The Codac library

Section 2

Application: range-only SLAM
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The Codac library

Simultaneous Localization And Mapping
Application: range-only SLAM
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The Codac library

Formalization
Application: range-only SLAM

SLAM: Simultaneous Localization And Mapping.
Classically, we have:

x(0) = 0 (initial state)
ẋ(t) = f

(
x(t),u(t)

)
(evolution)

yi = g
(
x(ti),bj

)
(observations)

With:

I x: state vector (position, heading, . . . )
I u: input vector (command)
I f : evolution function

I g: observation function (scalar, distance equation)
I yi: scalar measurements (at ti) (distance values)
I bj : unknown position of a landmark
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The Codac library

Involved variables and domains
Application: range-only SLAM

Variables:
I reals: yi ∈ R
I vectors: bj ∈ R2

I trajectories: x(·) : R→ Rn

Domains (envelopes) of the variables:
I intervals: [yi] ∈ IR
I boxes: [bj ] ∈ IR2

I tubes: [x](·) : R→ IRn
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The Codac library

Decomposition of the problem
Application: range-only SLAM

System:{
ẋ(·) = f

(
x(·)

)
yi = g

(
x1,2(ti),bj

)

v(·) and pi are intermediate variables

Note: some symbolic solver could break down such problem
automatically.

Elementary constraints:

I v(·) = f
(
x(·)

)
→ algebraic constraint → Lf

(
x(·),v(·)

)
I ẋ(·) = v(·) → derivative constraint → Lderiv

(
x(·),v(·)

)
I pi = x1,2(ti) → evaluation constraint → Leval

(
ti,pi,x1,2(·)

)
I yi = g

(
pi,bj

)
→ distance constraint → Ldist

(
pi,bj , yi

)
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The Codac library

Using Codac
Application: range-only SLAM

1. Defining the domains:
# Creating the state tube:
dt = 0.01
tdomain = Interval(0,6) # temporal domain
x = TubeVector(tdomain, dt, 4) # dim. 4
# etc.

2. Defining contractors:

.
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The Codac library

Using Codac
Application: range-only SLAM

1. Defining the domains:
# Creating the state tube:
dt = 0.01
tdomain = Interval(0,6) # temporal domain
x = TubeVector(tdomain, dt, 4) # dim. 4
# etc.

2. Defining contractors:
ctc.deriv # Some contractors are objects
ctc.eval # already defined in the library
ctc.polar
ctc.dist

# Other contractors can be built from analytical expressions:
ctc_plus = CtcFunction(Function("x","y","z","x+y-z"))
# CtcFunction is related to constraints under the form f(x,..)=0
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The Codac library

Using Codac
Application: range-only SLAM

3. Build a Contractor Network

System:{
ẋ(·) = f

(
x(·)

)
yi = g

(
x1,2(ti),bj

)
Contractor programming:

1. Cf
(
[x](·), [v](·)

)
2. Cderiv

(
[x](·), [v](·)

)
3. Ceval

(
[ti], [pi], [x1,2](·)

)
4. Cdist

(
[pi], [bj ], [yi]

)

Using Codac: C
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The Codac library

Using Codac
Application: range-only SLAM

3. Build a Contractor Network

System:{
ẋ(·) = f

(
x(·)

)
yi = g

(
x1,2(ti),bj

)
Contractor programming:

1. Cf
(
[x](·), [v](·)

)
2. Cderiv

(
[x](·), [v](·)

)
3. Ceval

(
[ti], [pi], [x1,2](·)

)
4. Cdist

(
[pi], [bj ], [yi]

)

Using Codac:

cn = ContractorNetwork()

cn.add(ctc.polar, [v[0],v[1],x[3],x[2]])
cn.add(ctc.deriv, [x,v])

for i in range(len(v_t)):
pi = IntervalVector(4)
cn.add(ctc.eval, [t[i],pi,x])
cn.add(ctc.dist, [pi,b[j],y[i]])

cn.contract()

C

#1
#2

#3
#4

-
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The Codac library

Using Codac
Application: range-only SLAM

cn = ContractorNetwork()

cn.add(ctc.polar, ..
cn.add(ctc.deriv, ..

for i in range(len(v_t)):
pi = IntervalVector(4)
cn.add(ctc.eval, ..
cn.add(ctc.dist, ..

cn.contract()

2399 contractors, 2410 dom.
Computation time: 0.25s
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The Codac library

Section 3

Contractor Networks
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The Codac library

Propagation
Contractor Networks

I Contractor Network = graph of Domains and Contractors
I The graph is possibly directed
I The network allows accurate propagation of the contractions
I When the stack of contractor calls is empty, a fixed point is reached

C4

[a]

C1
C3

C2 [d]

[b] [c]

Propagation sequence:

1. [c] contracted/triggered
2. adding C3 in stack
3. calling C3
4. [b] contracted
5. adding C2, C3, C4 in stack
6. calling C4

7. [b] contracted
8. adding C4 in stack
9. calling C2

10. [d] contracted
11. calling C3, C4
12. fixed point

⇒ heuristic of propagation
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The Codac library

Contractor Network involving Tubes
Contractor Networks

Example, dealing with: ẋ = f(x) ⇐⇒ ẋ = v , v = f(x)

[x](·)

[v](·)

C∫Cf

δ

·

[x](·)

tf

t1 t3
t0

x(·)

· δ

·

[x](·)

tf

t1 t3
t0

x(·)

·

output gate of [[x]](2)

slice [[x]](2)

I break down contractors into micro-contractors at the level of slices
I ⇒ strong densification of the graph
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The Codac library

Contractor Network involving Tubes
Contractor Networks

[x]k1
[x]k2

[x]k3
[x]kn

[v]k1
[v]k2

[v]k3
[v]kn

[x]kj

[v]kj
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The Codac library

Contractor Network involving Tubes
Contractor Networks

[x]k1
[x]k2

[x]k3
[x]kn

[v]k1
[v]k2

[v]k3
[v]kn

[x]kj

[v]kj

�

�
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The Codac library

Contractor Network involving Tubes
Contractor Networks

[x]k1
[x]k2

[x]k3
[x]kn

[v]k1
[v]k2

[v]k3
[v]kn [v](·)

[x](·)[x]kj

[v]kj

�

�

� � � � �

�����
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The Codac library

Contractor Network involving Tubes
Contractor Networks

[x]k1
[x]k2

[x]k3
[x]kn

[v]k1
[v]k2

[v]k3
[v]kn

C∫Cf C∫Cf C∫Cf C∫Cf

[v](·)

[x](·)[x]kj

[v]kj

C∫Cf

�

�
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�����
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The Codac library

Contractor Network for SLAM: SLAM-CN
Contractor Networks
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Contractor Network for SLAM: SLAM-CN
Contractor Networks

[x]k1
[x]k2

[x]k3
[x]kn

[v]k1
[v]k2

[v]k3
[v]kn

C∫Cf C∫Cf C∫Cf C∫Cf

[v](·)

[x](·)[x]kj

[v]kj

C∫Cf

�

�
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The Codac library

Contractor Network for SLAM: SLAM-CN
Contractor Networks

[x]k1
[x]k2

[x]k3
[x]kn

[v]k1
[v]k2

[v]k3
[v]kn

C∫Cf C∫Cf C∫Cf C∫Cf

[v](·)

[x](·)

Cg

[x]kj

[v]kj

C∫Cf

[b]a

�

�

� � � � �

�����

[y]t1
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The Codac library

Contractor Network for SLAM: SLAM-CN
Contractor Networks

[x]k1
[x]k2

[x]k3
[x]kn

[v]k1
[v]k2

[v]k3
[v]kn

C∫Cf C∫Cf C∫Cf C∫Cf

[v](·)

[x](·)

Cg

[x]kj

[v]kj

C∫Cf

[b]b

Cg CgCg

[b]a

�

�

� � � � �

�����

[y]t1 [y]t3 [y]tj [y]tn
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The Codac library

Programming a SLAM-CN
Contractor Networks

1. Define domains:
I intervals, boxes, tubes, . . .
I related to measurements or initialized as [−∞,∞]

2. Define contractors:
I use/configure already existing contractors from the library
I or build own contractors for specific constraints

3. Build the Contractor Network:

..
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The Codac library

Programming a SLAM-CN
Contractor Networks

1. Define domains:
I intervals, boxes, tubes, . . .
I related to measurements or initialized as [−∞,∞]

2. Define contractors:
I use/configure already existing contractors from the library
I or build own contractors for specific constraints

3. Build the Contractor Network:

cn = ContractorNetwork()
cn.add(ctc_f, [x,v])
cn.add(ctc.deriv, [x,v])

for i in range(len(v_t)):
pi = IntervalVector(4)
cn.add(ctc.eval, [t[i],pi,x]
cn.add(ctc.dist, [y[i],pi,b[i]])

cn.contract()
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Assets of constraint programming coupled with interval analysis:
I simplicity of the approach

I reliability of the results: no solution can be lost

I focus on the what instead of the how

I complex systems easily handled

Future work related to Codac:
I extend the catalog of contractors
I implement other domains and intermediate wrappers
I ..towards real-time implementations
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"Static" constraints
Appendices

Static constraint:

– ∀t, f(a(t), b(t), . . . ) = 0

– non differential
(not in the form
ȧ(t) = b(t))

– non inter-temporal
(not in the form
a(t+ 1) = b(t))

Example with a(·) = cos
(
b(·)

)
:

b acos

Ccos
(
[a](·), [b](·)

)
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"Static" constraints
Appendices

A definition of the C+ operator for tubes for the constraint
a(·) = x(·) + y(·):

C+
(
[a](·), [x](·), [y](·)

)
 [a](t)

[x](t)
[y](t)

 C+7−−−→

 [a](t) ∩
(
[x](·) + [y](·)

)
[x](t) ∩

(
[a](·)− [y](·)

)
[y](t) ∩

(
[a](·)− [x](·)

)

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Derivative constraint
Appendices

∫
v x

Differential constraint:

– ẋ(·) = v(·)
– one trajectory and its

derivative

Contractor on tubes:

C d
dt

(
[x](·), [v](·)

)

� Guaranteed computation of robot
trajectories

Rohou, Jaulin, Mihaylova, Le Bars, Veres

Robotics and Autonomous Systems, 2017
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Derivative constraint
Appendices

Definition of the C d
dt

operator:
tf⋂

t1=t0

[x](t)

[v](t)

 C d
dt7−−−→


tf⋂

t1=t0

(
[x](t1) +

∫ t

t1

[v](τ)dτ

)
[v](t)

 (1)
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Decomposition of ẋ = f(x,u)
Appendices

State equation:
(i) ẋ1 = x4 cos(x3)

⇔
{
ẋ1 = ϑx ; ϑx = x4 cos(x3)

}

(ii) ẋ2 = x4 sin(x3)

⇔
{
ẋ2 = ϑy ; ϑy = x4 sin(x3)

}

(iii) ẋ3 = u1
(iv) ẋ4 = u2

∫∫ ∫
∫

×

×

u1

ϑx

ϑy

x1

x2

u2 x4 x3

sin

cos

Involved operators: C×, Ccos, Csin, C d
dt

Involved sets: [x](·), [u](·), [ϑx](·), [ϑy](·)
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C d
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Appendices

State equation:
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Decomposition and wrapping effects
Appendices

ẋ = f(x,u)⇐⇒
{

v = f(x,u)
ẋ = v

=⇒

{
Cf
(
[v](·), [x](·), [u](·)

)
C d

dt

(
[x](·), [v](·)

)

See also: more efficient contractors without decomposition,
e.g. CLohner for dealing with ẋ = f(x)

� Safe and collaborative autonomous underwater docking

Auguste Bourgois PhD thesis, 2021
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