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For linear time-invariant dynamic systems with exactly known coefficients of their system
matrices for which measurements with bounded errors are available at discrete time
instants, an optimal polygonal state estimation scheme was recently published. This
scheme allows for tightly enclosing all possible state trajectories in presence of uncertain,
but bounded, system inputs which may be varying arbitrarily within in their bounds.
Moreover, this approach is also capable of accounting for uncertainty related to the
measurement time instants. However, the drawback of this polygonal technique is its
rapidly increasing complexity for larger system dimensions. For that reason, the polygonal
state enclosures are replaced by a computationally less expensive, but nearly optimal,
ellipsoidal enclosure technique in this paper. Numerical simulations for representative
benchmark examples focusing both on applications with precisely known and uncertain
parameters conclude this contribution.

Keywords: linear time-invariant systems, bounded uncertainty, state estimation, ellipsoidal enclosures, differential
inclusions

1 INTRODUCTION

Linear continuous-time system models with uncertain, but temporally constant parameters in their
system matrices as well as bounded, arbitrarily varying external inputs can be used for the
mathematical representation of a large number of system models in the frame of control design
and state estimation. These system models belong to the broad class of differential inclusions for
which bounds on the temporal variation rates of state variables are formulated in terms of inequality
constraints or interval variables. For an overview of the methodological challenges related to this
class of dynamic system models, the reader is referred to the works of Brogliato and Tanwani (2020),
Stewart (2011), Filippov (1988), and the references therein.

Possible applications can be found in distributed heating systems (Rauh et al., 2015), where
external inputs related to heat conduction and radiation might have temporally varying or unknown
state-dependent characteristics, modeling drive trains with elastic shafts (Amann et al., 2004)
characterized by uncertain load and disturbance torques, mechanical positioning systems which are
included, for example, in piezo servo hydraulic actuation techniques for camless combustion engines
(Haus et al., 2014), current and torque control for permanent magnet synchronous machines in a
d-q-coordinate system (Mousavi et al., 2020), or oscillation attenuation and trajectory tracking in
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robotics applications (Rauh et al., 2013). In all of these applications,
it is typically desired to reconstruct internal states on the basis of
measured data with uncertainty and to make guaranteed statements
about the applicability and safety of the resulting state trajectories in
terms of a computation of outer enclosures for those states that are
reachable at a certain point of time. Examples are soft landing
capabilities for controlled valves in the aforementioned combustion
engine (Di Bernardo et al., 2012), the guaranteed compliance of
controlled electric motors with hard current and torque constraints
or the guaranteed collision-free trajectory control of autonomous
robots (Zhang et al., 2019).

The uncertain and bounded system inputs then contain
(depending on the actual application as already partially
mentioned above) either control inputs which are not perfectly
known due to actuator imprecision or the influence of external
disturbances.

It should be pointed out that state estimation for linear dynamic
systems in a point-valued and stochastic context is a well developed
area. The classically applied estimation schemes are based on
Luenberger observers and Kalman filters (Kalman, 1960;
Luenberger, 1964; Stengel, 1994; Davis, 2002; Anderson and
Moore, 2005). However, these techniques either provide purely
point-valued state estimates in the case of deterministic
approaches (Luenberger-like observers) or aim at a
reconstruction of an expected value of a probability distribution
coming along with confidence bounds in the case of the Kalman
filter. Unfortunately, these techniques cannot provide strictly
guaranteed outer bounds on the domains of reachable states if
models described by differential inclusions are considered, where
information about the probability density functions of the uncertain
but bounded variables is totally absent.

Moreover, also classical simulation approaches making use of
set-valued uncertainty representations are not applicable in the
context of differential inclusions. Approaches such as AWA

(Lohner, 1987; Lohner, 1988), VNODE and VNODE-LP (Nedialkov,
1999; Nedialkov, 2007; Nedialkov, 2011), VSPODE (Lin and
Stadtherr, 2007), COSY VI (Berz and Makino, 1998; Hoefkens,
2001) and RIOT (Eble, 2007) are all based on a temporal series
expansion of the solution to the dynamic system model under
consideration. Due to the fact that the uncertain system inputs are
assumed to be bounded in this paper, however, without any
knowledge on their variation rates, these techniques are not
applicable because they heavily rely on high-order temporal
series expansions. The only set-valued approach that is widely
known to work in such contexts is the pure computation of
bounds on the basis of a Picard iteration (Deville et al., 2002). This
approach, however, as a set-valued generalization of the explicit
Euler method, inevitably leads to a blow-up of the computed state
enclosures which makes it only applicable for very short
prediction horizons. This problem can be circumvented
partially by defining exponential state enclosures as presented
in Rauh et al. (2016). These enclosures, however, suffer from a
non-negligible overestimation due to the wrapping effect of
interval analysis (Jaulin et al., 2001b; Lohner, 2001) if the state
equations under consideration are strongly coupled. This
overestimation can be countered by using the polygonal
solution representations detailed below or by exploiting

specific monotonicity properties of the system model (so-
called cooperativity, as it is typically done in the frame of
continuous- and discrete-time interval observer design (Raïssi
et al., 2012; Efimov et al., 2013; Smith, 1995)1). The property of
cooperativity only holds for a quite restricted class of system
models (e.g., thermo-fluidic ones) after a first-principle modeling.
So, simulation and state estimation techniques that rely on
cooperativity often need to be implemented in combination
with an additional change of coordinates (Marouani et al.,
2021; Rauh and Kersten, 2021). This change of coordinates is
on purpose avoided in the current paper due to the following
reasons: Especially for uncertain systems, such changes of
coordinates are non-trial to find (if they exist at all) and they
typically lead to overestimation that can be avoided by the use of
the ellipsoidal enclosure technique derived in this paper.

Note, also a pure replacement of continuous-time system
models by using explicit or implicit Euler schemes,
Runge–Kutta methods or other alternatives (Hairer et al.,
2000) does not solve the issues related with differential
inclusions, even if measured data were available at some
discrete instants of time in the context of state estimation. The
reason for this are the arising temporal discretization errors that
may lead to approximations that do not cover the true system
dynamics. Thinking of a set-valued context—which represents
the reachable state domains by intervals, polygons, ellipsoids,
etc.—a naive discretization then provides sets that often do not
include all of the actually reachable states during the transition
from one measurement instant to the next so that the property of
guaranteed state enclosures would be invalidated.

In previous work (Rohou and Jaulin, 2021) of the authors, a
polygonal approach was presented that allows for enclosing the
domains of reachable states for this class of linear continuous-
time system models, representing differential inclusions, in an
optimal way. However, the drawback of the technique is the large
computational complexity for increasing system dimensions. To
circumvent this difficulty, an alternative to the polygonal
technique is presented in the current paper which makes use
of a computationally less demanding ellipsoidal state enclosure
technique. Besides its reduced computational complexity, which
makes it applicable to systems of higher dimensions, this
approach is also directly applicable to linear time-invariant
systems with uncertain parameters and provides enclosures for
the domains of reachable states which are still nearly optimal with
respect to the widths of the enclosures.

For the purpose of a guaranteed state estimation, a guaranteed
evaluation of continuous-time system models as a kind of state
prediction algorithm is interfaced with a state correction scheme

1Interval observers provide a kind of framer for the actual system behavior by
computing lower and upper bounding trajectories for all possible states in a
decoupled manner. Due to the fact that they mimic the structure of a Luenberger
observer for both lower and upper bounding systems, they should not be confused
with predictor–corrector state estimation schemes in which a prediction based on
the open-loop dynamics is performed between the discrete time instants at which
measured data are available. Typically, the prediction in predictor–corrector state
estimation schemes is carried out without any assumption regarding potential
cooperativity of the state equations.
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that is executed at those discrete time instants at which
measurements become available.

In contrast to the aforementioned polygonal approach, a small
amount of overestimation is introduced by the new ellipsoidal
approach due to the fact that the mapping of ellipsoidal domains
over continuous-time state equations with uncertain parameters
does not result in solution sets that are exactly ellipsoidal. The
same also holds for the correction step based on the intersection
of ellipsoids with measured data. As shown by means of
numerical simulations, the state enclosures remain reasonably
tight for sufficiently tight interval parameters included in the
system matrices and for sufficiently accurate knowledge of the
external system inputs.

This paper is structured as follows. Section 2 provides a review
of fundamentals of set-membership state estimation procedures.
On this basis, Sections 3, 4 present details of the optimal
polygonal and the proposed novel ellipsoidal state estimation
scheme. A numerical benchmark example, aiming at a
comparison of these enclosure techniques is discussed in
Section 5. Besides considering linear time-invariant systems
with exactly known parameters, it also visualizes the novel
ellipsoidal predictor–corrector state estimator for an example
containing bounded uncertainty in the system matrix. Finally, an
outlook on future work summarizes this paper in Section 6.

2 SET-MEMBERSHIP STATE ESTIMATION
APPROACH

The approach provided in Rohou and Jaulin (2021) considers linear
time-invariant dynamical systems that are modeled in the form

_x � A p( ) · x + B p( ) · u, (1)
where A(p) is the system matrix and B(p) the corresponding
input matrix. Both A(p) and B(p) may depend on uncertain
parameters p ∈ Rnp , which are assumed to be time-invariant and
bounded by the interval p ∈ [p], where the element-wise relation
p

i
≤pi ≤ �pi holds for each vector component i ∈ {1, . . . , np}. In

addition to the dynamic system model above, we assume that
direct measurements of the state vector x ∈ Rnx may be available
and bounded by a box [yk] ∈ IRnx at the time instant tk, where
IRnx denotes the set of axis-aligned interval boxes inRnx , cf. Jaulin
et al. (2001b); Mayer (2017); Moore et al. (2009).

2.1 State Tube
A tube X(·)2 (Kurzhanski and Filippova (1993)) is used to
continuously enclose the feasible states of a dynamic system.
For that purpose, X(·) is defined as a set of trajectories
X(·): R ↦ P(Rnx) which satisfies

x ·( ) ∈ X ·( )5∀t, x t( ) ∈ X t( ). (2)
Assume that for t ∈ [0 ; �t], the state trajectory x(·) is known to

be inside a prior tube �X(·). This prior tube is initialized with the

direct measurements of the states given by intervals [yk]. It may
also be unbounded at the time instants for which no state
information is available a priori. We want to compute
recursively the tightest tube X(·) for x(·) that is consistent
with both the prior tube �X(·) (including the measurements)
and the state Eq. 1. This sequence can be interpreted as an
extension of the state estimator proposed in Bertsekas and
Rhodes (1971) or Jaulin et al. (2001a) to continuous-time
systems.

For a given initial vector x1 defined at t1, the state at time t2 is
expressed by

x2 � Φu ·( )
t1 ,t2

x1( ), (3)
where Φt1 ,t2 is the flow of the dynamical system according to its
input u(·). The flow can be extended to sets (Aubin and
Frankowska (1990)) as follows3:

Φu ·( )
t1 ,t2

X1( ) � x2 | ∃x1 ∈ X1, x2 � Φu ·( )
t1 ,t2

x1( ){ }. (4)
Furthermore, when the input u(·) is uncertain but known to be

inside a tube U(·), the set flow given by Eq. 4 becomes

ΦU ·( )
t1 ,t2

X1( ) � ⋃
u ·( )∈U ·( )

Φu ·( )
t1 ,t2

X1( ). (5)

We now define the posterior state tube as the tightest tube X̂(·)
for x(·) consistent with the prior tube �X(·), the feasible inputs u(·)
in U(·), and the dynamic system model. We obtain

X̂t � ⋃
u ·( )∈U ·( )

⋂
τ∈ 0 ; �t[ ]

Φu ·( )
τ,t

�Xτ( ) (6)

as illustrated in Figure 1.
The state estimation consists in the approximation of X̂(·),

∀t ∈ [0 ; �t]. A numerical method can be used to this end that is
implemented by means of a recursive algorithm.

Remark 1. For system models (1), in which the parameters p are
uncertain and temporally varying, we assume in this paper that
the system matrix A only contains the time-invariant parts of the
dynamics, while all further time-varying effects are assumed to be
included in the additive offset term B(p) · u by means of a
suitable reformulation.

2.2 Recursive Procedure
We now define the setsX

→
t and X

←
t that correspond respectively to

the sets of all x(t) consistent with the past (before the point of time
t) and the future (after t). The following theorem allows us to
implement the exact sequence to compute the tube X̂(·). This
theorem as well as Theorem 2 are published in Rohou and Jaulin
(2021) together with a detailed proof.

Theorem 1. Given the sampling times of measurements

T � 0, δ, 2δ, . . . , �kδ{ } � t0, t1, t2, . . . , t�k{ }, (7)

2The dot notation (·) is used in this paper for representing the independent variable.
3For ease of reading, the notation u(·) is used instead of u[t1 ; t2](·), as the values of
u(·) are independent of those outside the interval [t1 ; t2].
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a prior tube �X(·) containing the state trajectory x(·), and a tube
U(·) for the inputs. The posterior tube X̂(·) can be defined
recursively by

X
→

tk � ΦU ·( )
tk−1 ,tk X

→
tk−1( )∩ ⋃

u ·( )∈U ·( )
⋂

τ∈ tk−1 ; tk[ ]
Φu ·( )

τ,tk
�Xτ( )

X
←

tk � ΦU ·( )
tk+1 ,tk X

←
tk+1( )∩ ⋃

u ·( )∈U ·( )
⋂

τ∈ tk ; tk+1[ ]
Φu ·( )

τ,tk
�Xτ( )

X̂tk � X
→

tk ∩ X
←

tk

(8)

with X
→

t0 � �X(t0) and X
←

t�k � �X(t�k). Moreover, for
t ∈ [tk ; tk+1]\T, we have

X̂t � ΦU ·( )
tk,t

X̂tk( ). (9)

2.3 State Estimator in the Linear Case
The exact sequence suggested by Theorem 1 is valid regardless
whether the system is linear or nonlinear. Nevertheless, it can be
implemented exactly on a computer only in the linear case. This is
due to the fact that we generally do not have an explicit expression
for the flow when dealing with nonlinear systems described by
_x � f(x, u). This section shows how an accurate representation of
the exact sequence for state estimation that is given by Eq. 8 can
be implemented in the linear case.

2.3.1 Principle
For a linear dynamic system (1), a closed-form expression for the
flow is given by

Φu ·( )
t1 ,t2

x( ) � eA p( )· t2−t1( )x + ∫t2

t1

eA p( )· t2−τ( ) · B p( ) · u τ( )dτ. (10)

To use Eq. 10 in the case where interval uncertainties exist
for the point of time t, we need to introduce the concept of the
exponential for interval matrices [A] (in our case, A([p]))
which has to be understood in terms of a set-theoretic

meaning (Goldsztejn and Neumaier (2014)). It is defined as
the tightest enclosure in the form of an interval matrix which
contains all feasible exponentials of A(p), assuming that p ∈
[p], i.e.,

eA p[ ]( ) � M | ∃p ∈ p[ ],M � eA p( ){ }[ ]. (11)
Moreover, given an interval matrix [A] and a set of vectors X,

we define the product [A] · X as the tightest box enclosing all
feasible products A·x assuming that x ∈ X and A ∈ [A], i.e.,

A[ ] · X � y | ∃A ∈ A[ ], ∃x ∈ X, y � A · x{ }[ ]. (12)
The following theorem corresponds to an implementation of

the exact sequence provided by Theorem 1. For a proof, the
reader is referred to Rohou and Jaulin (2021).

Theorem 2. Given the sampling times of measurements

T � 0, δ, 2δ, . . . , �kδ{ } � t0, t1, t2, . . . , t�k{ }, (13)
a prior tube �X(·) containing the state trajectory x(·), and a
piecewise constant tube

U ·( ) � u ·( ) | ∀k,∀t ∈ kδ ; k + 1( )δ[ ], u t( ) ∈ u[ ]k{ } (14)
containing u(·), where [u]k, k ∈ {0, . . . , �k − 1} is a boxed slice of
the tube U(·) as illustrated by Figure 2. We have

X
→

tk ⊂ �Xtk ∩ eA p[ ]( )·δ · X→tk−1 + δeA p[ ]( )· 0 ; δ[ ] · B p[ ]( ) · u[ ]k−1{ }
X
←

tk ⊂ �Xtk ∩ e−A p[ ]( )·δ · X←tk+1 − δe−A p[ ]( )· 0 ; δ[ ] · B p[ ]( ) · u[ ]k{ }
X̂tk � X

→
tk ∩ X

←
tk

(15)
with X

→
t0 � �Xt0 and X

←
t�k � �Xt�k.

Moreover, when t is not consistent with the tube
discretization, i.e., for t ∈ [tk ; tk+1]\T, we have

FIGURE 1 | Illustration of one slice of a posterior tube X̂(·) at time t2 (red hatched part). This slice is defined as the intersection set X̂t2 �ΦU(·)
t1 ,t2( �Xt1) ∩ ΦU(·)

t3 ,t2( �Xt3), with
the prior states �Xt1 and �Xt3 . The flow function ΦU(·)

t,t2 transports the prior sets from t to t2, according to the feasible inputs U(·) over [t ; t2]. The result of each
transportation, from t1 and from t3, is depicted in blue at the time instant t2.
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X̂t � eA p[ ]( )· t−tk( ) · �Xtk + t − tk( )eA p[ ]( )· 0 ; t−tk[ ] · B p[ ]( ) · u[ ]k{ }.
(16)

2.4 Wrappers for Enclosing Xt
Now that we have a reliable definition for the enclosureX(·) from
a bounded input U(·) (without any information about its
temporal variation rates within the given bounds), that can be
numerically represented by a boxed tube [u](·) and guaranteed to
enclose u(·), it remains to reliably implement the sets X(·).
Several wrappers can be considered, such as intervals,
polygons, or ellipsoids. The use of intervals amounts to
representing Xt as a box (which is the implementation of
tubes described, for instance, in Rohou et al. (2017), and used
for [u](·)). The following section provides the polygon-based
algorithm provided in Rohou and Jaulin (2021) that has been
shown to be optimal. The further sections of this paper then
introduce a new method using ellipsoids as wrappers. In the last
part of the paper, we will compare all three methods to assess the
pros and cons of each of these alternatives.

3 OPTIMAL POLYGONAL METHOD

3.1 Polygonal Sequences
Consider a polygon Pk which contains �Xtk. We apply the
following polygonal sequence as a specific formulation of the
general approach described in Eq. 15:

• First, forward in time propagation, for k ∈ {1, . . . , �k}:
Pk ≔ Pk ∩ eA p[ ]( )·δ · Pk−1 + δeA p[ ]( )· 0 ; δ[ ] · B p[ ]( ) · u[ ]k−1{ },

(17)

• then, backward in time propagation, for k ∈ {�k − 1, . . . , 0}:
Pk ≔ Pk ∩ e−A p[ ]( )·δ · Pk+1 − δe−A p[ ]( )· 0 ; δ[ ] · B p[ ]( ) · u[ ]k{ } ,

(18)

• finally, polygonal enclosure between different sampling
points, k ∈ {0, . . . , �k − 1}:

Pk: k+1 � eA p[ ]( )· 0 ; δ[ ] · Pk + 0, δ[ ]eA p[ ]( )· 0 ; δ[ ] · B p[ ]( ) · u[ ]k{ }.
(19)

From Theorem 2, we know that for all tk ∈ T,

X̂tk ⊂ Pk,
∀t ∈ tk ; tk+1[ ], X̂t ⊂ Pk: k+1.

{ (20)

The implementation of this procedure resembles the exact
sequence given by Theorem 2. As a consequence, it is not
necessary in practice to apply the polygonal sequence several
times in a recursive manner to obtain an accurate enclosure.

In the following section, the abbreviations

Φ p( ) � eA p( )·δ and Ψ p( ) � δ · eA p( )·δ · B p( ) (21)
are used to denote the exact temporal discretization of a linear
time-invariant system used repeatedly in expressions such as Eq.
17, where suitable extensions will be defined for the case of
interval parameters and uncertainty in the sampling (respectively,
measurement) time instants.

Remark 2. In contrast to the numerical, approximating
discretization schemes mentioned in the introduction of this
paper, this kind of discretization is exact and does not suffer
from temporal truncation errors if all matrix exponentials
involved are represented in terms of interval bounds, cf. Eq. 11.

Remark 3. Due to the fact that the proposed estimation scheme
involves temporal forward and backward evaluations of the solution
tubes, one of the evaluation directions commonly deals with stable
and the other one with unstable dynamics. Hence, the examples
included in this paper directly show the applicability of the proposed
method to both stable and unstable systems, where the evaluation in
the stable direction may (depending on the bounds of uncertain
parameters and inputs) show a contraction of the computed state
enclosures and the opposite direction of evaluation a corresponding
widening caused by the unstable dynamics.

FIGURE 2 | Illustration of a tubeU(·) � [u](·)made of boxed slices. This representation can be used in order to reliably enclose sets of trajectories. For instance, the
thick blue box depicts the [u]k=2 slice containing all feasible values for u(t), t ∈ [t2 ; t3], cf. Rohou and Jaulin (2021).
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3.2 Pros and Cons of the Polygonal
Approach
Set-membership methods are known to be guaranteed because
the propagation of uncertainties over time is made rigorously by
using reliable operations such as interval analysis (Jaulin et al.,
2001b; Mayer, 2017). In the case of the polygonal approach
proposed in the previous work of Rohou and Jaulin (2021), the
method is also optimal since it is a direct extension of Theorem 2
without wrapping effects. Such wrapping effects would result from
enclosing complex shaped sets by more simple outer bounds (such
as boxes) which are subsequently propagated further (in time)
and then again enclosed by simplified outer bounds. Indeed, each
operation during the analysis of linear time-invariant dynamic
systems involving convex polygons as state enclosures results in
another convex polygon, unfortunately, commonly with an
increasing number of vertices required to represent the exact
solution domains. This mapping of bounds to the same class of set
representation, however, is not the case with boxes, which
inevitably leads to a strong pessimism in recursive algorithms
(Krasnochtanova et al., 2010).

As a consequence, if we assume that the sampling time δ is
infinitely small and that the computer works exactly with real
numbers instead of floating point numbers, the polygonal
approach can be qualified as exact since it does not introduce
any pessimism and does not lose any feasible values.

Despite these advantages, the polygonal approach also comes
with two drawbacks:

• Set operations on polygons lead to an increasing number of
vertices, because the output of a vertex by an inclusion function
is a box. The computational complexity can be reduced by
removing vertices in some reliable way. This is done in thework
of Rohou and Jaulin (2021) but at the expense of significant
computation times. The optimality of the results is also lost
during the simplification procedure of these polygons.

• The reliable implementation of polygons and their operations
are complex and limited to problems of lowdimensions. This is
the reason why the implementation proposed in the previous
work is limited to setsX(·) inR2, which can be seen as a strong
limitation for a variety of real-life applications,where set-valued
state estimation algorithms need to be implemented on
embedded systems in a real-time capable manner.

These reasons motivate the study of ellipsoids as an alternative
wrapper for X(·) sets in the following section.

4 ELLIPSOIDAL STATE ESTIMATION
PROCEDURE

To derive the alternative ellipsoidal wrapper and corresponding
state estimation procedure, assume first that a discrete-time
system model in the form

xk+1 � Φ p( ) · xk +Ψ p( ) · uk (22)
is given, where Φ(p) is the system matrix and Ψ(p) the
corresponding input matrix, see also Eq. 21 and Remark 1.

Both Φ(p) and Ψ(p) may depend on uncertain parameters
p ∈ Rnp as it was already discussed for the continuous-time
system model (Eq. 1). The following state estimation
procedure is a generalization of the thick ellipsoid state
estimation presented in Rauh et al. (2021) in the sense that it
allows for taking into consideration the additive termΨ(p) · uk in
the state Eq. 22. This term is either described in terms of an
interval enclosure that is subsequently bounded by a guaranteed
outer ellipsoid or by the vertices of a polygon as motivated by the
previous section. Also in the latter case, this term will be enclosed
by a tight (Löwner-John-type, cf. John (1948)) ellipsoid bound to
obtain a simple to evaluate state estimation procedure.

In addition to the dynamic system model above, we assume
that measurements ym,k+1 with an ellipsoidal uncertainty model

C · xk+1 − ym,k+1( )T · Q−1
m · C · xk+1 − ym,k+1( )≤ 1 (23)

are available. To make the ellipsoidal set intersection operator
introduced in Rauh et al. (2021) applicable to perform the state
estimation tasks, we assume that the inequality (Eq. 23) can be
reformulated equivalently in terms of the constraint

xk+1 − ym,k+1′( )T · Pm′ · xk+1 − ym,k+1′( )≤ 1. (24)
In this inequality (Eq. 24), the matrix Pm′ is a purely diagonal

matrix if the system’s output matrix C in Eq. 23 represents a
direct measurement of selected components of the state vector
xk+1, i.e., being an all-zero matrix except for a single entry with the
value one per row. If less outputs than state variables are available
as measured data, the matrix Pm′ is not invertible and represents a
degenerate ellipsoid in the nx-dimensional state space.

Using this notation, entries in the vector ym,k+1′ that correspond
to non-measured components of the state vector at the time instant
k + 1 are set to the associated ellipsoid midpoint μk+1 obtained from
the state prediction, while all other components correspond to the
point-valued measured data ym,k+1.

In general, ellipsoidal state bounds at the time instant k are
denoted as

Ek μk, Γk( ) ≔ xk ∈ Rnx | xk − μk( )TΓ−Tk Γ−1
k xk − μk( )≤ 1{ } (25)

with the positive definite shape matrix Qk � ΓkΓTk ≻ 0 and the
midpoint vector μk ∈ Rnx .

In the following two subsections, a predictor–corrector type state
estimation scheme is described. It consists of firstly propagating
ellipsoidal state enclosures from the time step k to the next
sampling instant k + 1 according to the system dynamics (Eq. 22).
Subsequently, this a-priori information is updated in the set-valued
correction step on the basis of the measurement models (Eqs. 23, 24),
respectively, describing bounded uncertainty in the sensor readings.

4.1 Ellipsoidal State Prediction Step:
Propagation of Outer Ellipsoidal State
Bounds
The first three steps of the following state prediction procedure
for discrete-time systems (Eq. 22) were basically published and
proven in Rauh et al. (2021). The major difference is that the
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quoted publication makes use of a thick ellipsoid state enclosure
approach in which inner and outer ellipsoid bounds for the first
term Φ(p) · xk in Eq. 22 are determined simultaneously.

However, for the sake of a pure state estimation in the form of
computing guaranteed outer enclosures, as it has already been
done by using a polygonal approach in the previous section, only
the outer bounds of those thick ellipsoids are of interest.
Therefore, the state prediction technique described in this
subsection is inspired by the approach from Rauh et al. (2021)
but leaves out the computation of inner state bounds. However, if
inner bounds of the solution set were determined additionally,
they could be used to detect scenarios reliably in which the
bounded parameters p are the source for significant
overestimation. In such cases, the outer and inner bounds of
the thick ellipsoids from Rauh et al. (2021), Rauh and Jaulin
(2021a), and Rauh and Jaulin (2021b) have a large distance. Then,
it is often helpful to subdivide the parameter intervals [p] into
individual subboxes, to evaluate the prediction individually for
each of these boxes, and to compute the ellipsoidal union over
them as demonstrated in Section 3.3 of Rauh et al. (2021).

For finding outer ellipsoidal enclosures of the subexpression
Φ(p) · xk in Eq. 22, we assume that this part of the system model
is reformulated in the form

xΦ,k+1 � Φ p( ) · xk � Φ p( ) · xk + ~Φ · μk + Φ p( ) − ~Φ( ) · μk, (26)
so that an origin-centered ellipsoid can be propagated with the
help of the first term in Eq. 26, while the remaining terms account
for the influence of the generally non-zero ellipsoid midpoint. For
that purpose, introduce the following notation already used in
Eq. 26. It is employed during the state prediction phase consisting
of the Steps P1–P5:

Ek � Ek μk, Γk( ) denotes the ellipsoidal uncertainty on the
non-origin centered states xk, (27)

Ek � Ek 0, Γk( ) the uncertainty of �xk after shifting the
ellipsoid to the origin, and (28)

~Φ � Φ mid p[ ]( )( ) themidpoint approximation of the quasi−
linear systemmatrix with (29)

p ∈ p[ ]� p ; �p[ ], andtheintervalmidpoint mid p[ ]( )� 1
2
· p + �p( ).

(30)

Step P1: Apply

�xk+1 � Φ p( ) · �xk (31)
to the ellipsoid Ek in Eq. 28. The shape matrix of the outer
ellipsoid enclosure of the image set is described by an ellipsoid
with the shape matrix

�Qk+1 � α2
k+1 · Γk+1 · ΓT

k+1, (32)
where αk+1 ≥ 0 is the smallest value for which the linear matrix
inequality (LMI)

Mk+1 ≔ Λ
−Q−1

k ΦT p( ) · ~Φ−T

~Φ
−1 ·Φ p( ) −α2

k+1Rk

⎡⎣ ⎤⎦Λ ⪯ 0 , Qk � Γk · ΓTk (33)

is satisfied for all p ∈ [p] with
Rk ≔ Γk · ΓT

k . (34)
As an addition to the original algorithm in Rauh et al. (2021),

the symmetric preconditioning matrix Λ = ΛT ≻ 0 has been
introduced in Eq. 33. It helps to optimize the ellipsoidal
enclosures especially in scenarios in which the norms of
(~Φ−1 ·Φ(p))−T and Qk are significantly different4. Then, the
non-rescaled equation withΛ = Imay provide unnecessarily wide
outer bounds. Numerical investigations have shown that a
reasonable choice for this scaling is the block diagonal matrix

Λ � blkdiag βI, β−1I( ) (35)
with the identity matrix I ∈ Rnx×nx and the square root

β � ����������
min λi Qk( ){ }√

(36)
of the smallest eigenvalue of Qk. According to Rauh et al. (2021),
the LMI (Eq. 33) characterizes an ellipsoid that encloses all results
of the mapping (Eq. 31). To satisfy this inclusion property, the
stretch parameter αk+1 is increased up to the point, where the
property of negative (semi-)definiteness holds in Eq. 33.

Step P2: Compute interval bounds for the term

bk � Φ p( ) − ~Φ( ) · μk ∈ bk[ ] (37)
which accounts for a non-zero ellipsoid midpoint with xk, ~Φ, and
p defined according to Eqs. 27, 29, 30. Inflate the outer ellipsoid
bound described by the shape matrix (Eq. 32) with

Qk+1 � 1 + ρO,k+1( )2 · �Qk+1 , ρO,k+1 � sup α−1
k+1 · Γ−1

k · bk[ ]���� ����{ },
(38)

where the interval-valued generalization of the Euclidean norm
operator is defined in Rauh and Jaulin (2021a).

Step P3: Compute the updated ellipsoid midpoint as

μΦ,k+1 � ~Φ · μk. (39)
The outer ellipsoidal enclosure EΦ,k+1 of xΦ,k+1 at the time

instant k+1 then becomes

xΦ,k+1 ∈ EΦ,k+1 μΦ,k+1, ΓΦ,k+1( ), (40)
where

ΓΦ,k+1 � αk+1 · 1 + ρO,k+1( ) · ~Φ · Γk. (41)

Step P4: Determine an ellipsoidal enclosure for the summand

4Due to the fact that the matrix Φ(p) is defined as the exponential of a
continuous-time model’s system matrix according to Eq. 21, the eigenvalues of
~Φ � Φ(mid([p])) are always non-zero and, thus, ~Φ is invertible. This is a direct
consequence of the series expansion definition of thematrix exponential and can be
shown alternatively by Jacobi’s formula to prove the identity det(eM) � etrace M{ } for
arbitrary square complex matrices M, where the matrix determinant equals the
product of its eigenvalues (Hall, 2015).
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xΨ,k+1 � Ψ p( ) · uk (42)
according to

xΨ,k+1 ∈ EΨ,k+1 μΨ,k+1, ΓΨ,k+1( ). (43)
Details of this step are further described in Section 4.3 for the

case that the system model (Eq. 22) results from the exact
temporal discretization of a linear time-invariant continuous-
time model with uncertain but bounded inputs according to
Eq. 21.

Step P5: Compute an ellipsoidal enclosure of the Minkowski
sum of the two intermediate results EΦ,k+1 and EΨ,k+1 according to

EΦ,k+1 ⊕ EΨ,k+1 ⊆ Ek+1 μk+1, Γk+1( ) (44)
with the new midpoint

μk+1 � μΦ,k+1 + μΨ,k+1 (45)
and the updated shape matrix

Γk+1 � Q
1
2, (46)

which is given in closed-form by the nearly optimal shape matrix

Qk+1 � 1 + 1
β

( ) · ΓΦ,k+1 · ΓT
Φ,k+1( ) + 1 + β( ) · ΓΨ,k+1 · ΓT

Ψ,k+1( ) (47)

with

β �

����������������
trace ΓΦ,k+1 · ΓT

Φ,k+1{ }
trace ΓΨ,k+1 · ΓT

Ψ,k+1{ }
√√

. (48)

For a derivation of this expression, the reader is referred to
Kurzhanskii and Vályi (1997), Halder (2018), and Noack et al.
(2009).

4.2 Ellipsoidal Correction Step: Intersection
of Ellipsoids With Different Midpoints
To perform the correction step, either for the case of intersecting
bounds for the state variables which are compatible with
measured data, or for intersecting different guaranteed state
enclosures during the ellipsoidal enclosure approach at the
same time instant (resulting from a temporal forward and
backward evaluation of the system model), we employ the
intersection technique for ellipsoids with different midpoints
already derived in Rauh et al. (2021). This approach is an
extension of the technique for computing Dikin ellipsoids
which is discussed in detail in Henrion et al. (2001).

This extension consists of the following two steps:

Step C1: Determine the common center point for the desired
inner and outer bounds of the intersection that must be
included in all ellipsoids to be intersected;

Step C2: Determine the shape matrices for the outer ellipsoid
bound according to the computation of Dikin ellipsoids
according to Henrion et al. (2001).

Preliminary work in Rauh et al. (2021) has shown that an
efficient heuristic approach for the computation of the common

center point ~μk+1 in Step C1 of the two ellipsoids E(μk+1, Γk+1),
Qk+1 � Γk+1ΓTk+1 and E(μm,k+1, Γm,k+1), Qm,k+1 � Γm,k+1ΓTm,k+1 is
given by an approach motivated by the innovation step of a
Kalman filter (Kalman, 1960; Stengel, 1994). Here, the ellipsoid
E(μm,k+1, Γm,k+1) characterizes the measurement model (Eq. 23)
with the output matrix C.

With the help of this information, the Kalman gain matrix

Lk+1 � Qk+1 · CT · C ·Qk+1 · CT +Qm( )−1 (49)
can be computed to define the updated ellipsoid midpoint

~μk+1 � μk+1 + Lk+1 · μm,k+1 − μk+1( ). (50)
Now, both ellipsoids to be intersected are enclosed during the

Step C2 by new ellipsoids centered at the midpoint ~μk+1. For that
purpose, the scaling factors

ζk+1 � 1 + Δμ1,k+1
���� ���� with Δμ1,k+1 � Q

−1
2

k+1 · ~μk+1 − μk+1( ) (51)
and

ζm,k+1 � 1 + Δμm,k+1
���� ���� with Δμm,k+1 � Pm′( )12 · ~μk+1 − μm,k+1′( )

(52)
are determined which represent the maximum distances of the
new midpoint computed in Eq. (50) from the original ellipsoid
surfaces. Here, ‖Δμ1,k+1‖ and ‖Δμm,k+1‖ are the Euclidean norms
of the corresponding vector-valued arguments.

The outer bound of the intersection of these two rescaled
ellipsoids is given by Eq. 53 in Rauh et al. (2021) by

Ek+1 � Ek+1 ~μk+1, Γk+1′( ) with Γk+1′ � Qk+1′( )12, (53)
where the shape matrix is determined with the closed-form
expression

Qk+1′ � 4 · 2 · ζ2k+1 ·Qk+1( )−1 + ζ−2m,k+1 · Pm′( )( )−1
(54)

with Qk+1 from Eq. 38. As it was shown in Rauh et al. (2021),
this approach is applicable also in cases in which not all
components of the state vector are measured, i.e., if the
matrix Pm′ introduced in Eq. 24 represents a degenerate
ellipsoid with bounds that may be infinitely wide in some
components of the state space. Note that this procedure may
be less accurate than the technique presented in Becis-Aubry
(2020). However, it has the advantage of a simple closed-form
representation that does not require the solution of a specific
optimization task at each sampling instant at which
measurements are available.

Remark 4. To avoid pessimism that may result from the ellipsoid
midpoint choice in Eq. 50 when the sizes of both ellipsoids to be
intersected are significantly different, the example in the
following section makes use of a three-fold evaluation of the
intersection step, where besides the choice in Eq. 50 also
intersection results are determined which are centered either
at μk+1 or at μm,k+1′ . From all three alternatives, the ellipsoid
with the smallest volume is selected when continuing the
evaluation of the state equations.
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4.3 Application to Linear Time-Invariant
Continuous-Time Models With Bounded
Inputs
To make the predictor–corrector state estimation approach presented
in the previous two subsections applicable to the continuous-time
models introduced in Sections 2, 3, define the fundamental matrix

Φ p( ) ∈ eA p[ ]( )·δ , (55)
where δ is the known discretization step size. This fundamental
matrix is either evaluated in symbolic form with a subsequent
replacement of all occurrences of the parameters p by their
corresponding point values (or by their interval bounds [p] to
obtain a suitable interval extension of this matrix). If symbolic
formula manipulation for the computation of this matrix is
inefficient in the case of large dimensions nx, interval bounds
for the matrix Φ(p) can be determined alternatively by solving a
suitable initial value problem (IVP) in a verified way. In detail, an
interval enclosures of the i-th column ofΦ(p) can be obtained by
solving the auxiliary IVP

_x t( ) � A p( ) · x t( ) (56)
with the initial conditions x(0) = ei, where ei is the i-th unit vector.
Possible options for solvers applicable to this task are VNODE-LP

(Nedialkov, 2011), VSPODE (Lin and Stadtherr, 2007) or CAPD

(Kapela et al., 2020).
In addition, a set-valued enclosure of the matrixΨ(p) according to

Ψ p( ) ∈ δ · eA p[ ]( )· 0 ; δ[ ] · B p( ) (57)
is necessary to evaluate the Steps P4 and P5 of the ellipsoidal state
prediction approach. As described in Step P4, cf. Eq. 42, an
ellipsoidal enclosure of the expression

xΨ,k+1 � Ψ p( ) · uk (58)
is required for that purpose, where the input signal of the
dynamic system model is bounded according to uk ∈ [uk],
again without any assumptions on the temporal variation rates
of this system input. To determine this ellipsoid, the following
two different options are possible.

4.3.1 Approach 1: LMI-Based Enclosures
In the first approach, the bounds are computed after determining
a convex polytope XΨ,k+1 representing all possible values for
xΨ,k+1 with the corresponding vertices x

〈j〉
Ψ,k+1, j ∈ {1, . . . , L}. From

these vertex points, an ellipsoidal enclosure

EΨ,k+1 μΨ,k+1, ΓΨ,k+1( ) with QΨ,k+1 � ΓΨ,k+1 · ΓT
Ψ,k+1 (59)

can be determined which is close to the minimum-volume
Löwner-John ellipsoid can be determined by solving the LMI
constrained optimization problem.5

min
QΨ,k+1 ,μΨ,k+1

trace QΨ,k+1{ }( )
1 x〈j〉Ψ,k+1 − μΨ,k+1( )T

x〈j〉Ψ,k+1 − μΨ,k+1( ) QΨ,k+1
⎡⎢⎢⎣ ⎤⎥⎥⎦ ⪰ 0 for all j ∈ 1, . . . , L{ }

(60)
QΨ,k+1 ⪰ 0.

The LMIs above with the decision variables μΨ,k+1 and QΨ,k+1

are equivalent according to the Schur complement formula to the
inequality constraints

x〈j〉Ψ,k+1 − μΨ,k+1( )T ·Q−1
Ψ,k+1 · x〈j〉Ψ,k+1 − μΨ,k+1( )≤ 1 (61)

that need to be satisfied for each polygon vertex j ∈ {1, . . . , L} to
have a guaranteed outer enclosure of the polygon.

4.3.2 Approach 2: Simplified Conversion of Box-Type
Enclosures Into Ellipsoids
As a computationally less demanding formulation, the shape
matrix QΨ,k+1 (which in the limit case may be degenerate due to
zero eigenvalues leading to principal axes of vanishing length in
some of the dimensions of the state space) can be approximated
in terms of

QΨ,k+1 � nk+1′ · T · diag r21,k+1 . . . r2n,k+1[ ]{ } · TT. (62)
Here, nk+1′ is the number of non-zero entries in the vector

rk+1 �
r1,k+1
..
.

rn,k+1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� 1
2
· diam δ · eA p[ ]( )· 0 ; δ[ ]−mid A p[ ]( )· 0 ; δ[ ]( ) · B p( ) · uk[ ]{ },

(63)
where the regular preconditioning matrix

T � emid A p[ ]( )· 0 ; δ[ ]( ) (64)
has been introduced to reduce the influence of overestimation due
to the wrapping effect of interval analysis (Jaulin et al., 2001b).

Using the shape matrix in Eq. 62, the associated ellipsoid
midpoint is given by

μΨ,k+1 � T ·mid δ · eA p[ ]( )· 0 ; δ[ ]−mid A p[ ]( )· 0 ; δ[ ]( ) · B p( ) · uk[ ]( ).
(65)

Remark 5. Uncertainty in the discretization step size δ can be
accounted for in all equations in this subsection by treating its
value as an interval parameter in analogy to the procedure
described in (Rohou and Jaulin, 2021), Section 3.4.

5 NUMERICAL BENCHMARK EXAMPLE

5.1 Benchmark With a Point-Valued System
Matrix
As a benchmark example, we consider the system model

5The exact volumeminimization task would require the solution of an optimization
task in which the minimization of a matrix trace is replaced by the more complex
determinant minimization task described in Appendix C of Tarbouriech et al.
(2011).
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_x1

_x2
! " �

x2

Šx1 Šx2 + u! " (66)

that has been studied originally inRohou and Jaulin (2021)for
the demonstration of the polygonal state estimation procedure.
For the stateEq. 66, it is assumed that the initial conditions are

unknown to the state estimator so that they have to be
reconstructed by the proposed procedure during a temporal
backward evaluation of the system model, starting from the
� rst point of time at which measured data are available. For
the following simulation case study, we assume further that the
control input of the system is described by

FIGURE 3 |Comparison of interval-based, polygonal, and ellipsoidal wrappers for the case of eight measurement instants with different discretization step sizes� .
(A) State enclosures for� = 0.1. (B) State enclosures for� = 0.01. (C) Enlarged view for� = 0.1. (D) Enlarged view for� = 0.01. (E)Volume of the state enclosures for� =
0.1. (F) Volume of the state enclosures for� = 0.01.
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