

 codac

 1.5.5

 	Codac main page	Try Codac online with Python
	Installing the Codac library
	Start a Python project
	Start a C++ project
	Introduction
	Basic structures for real values
	Domains: sets of feasible values
	Inclusion functions
	Catalog of contractors for static constraints
	Catalog of contractors for dynamical systems
	Contractor Networks
	Graphical tools
	FAQ: Frequently Asked Questions
	Changelog
	C++ API technical documentation
	Information for developers
	Main page
	Introduction
	A. Intervals and contractors
	B. Static range-only localization
	C. Static range-bearing loc.
	D. Building our own contractor
	E. Hello tubes
	F. Localization with asynchronous measurements
	G. Localization with data association
	H. Range-only SLAM

	Try Codac online with Python
	Installing the Codac library
	Start a Python project
	Start a C++ project
	Start a MATLAB project

User manual

	Introduction
	Basic structures for real values
	Domains: sets of feasible values
	Inclusion functions
	Static contractors
	Temporal contractors
	Contractor Networks
	Set-inversion and separators
	Graphical tools
	FAQ: Frequently Asked Questions
	See also: codac-unsupported

Set4MOST

	Examples

Tutorial JNRR23

	JNRR-1. Intervals and contractors
	JNRR-2. Static range-only localization
	JNRR-3. Towards SLAM

Tutorial for mobile robotics

	Main page
	Introduction
	A. Intervals and contractors
	B. Static range-only localization
	C. Static range-bearing localization
	D. Building our own contractor
	E. Hello tubes
	F. Asynchronous measurements
	G. Localization with data association
	H. Range-only SLAM

Use cases

	Lie symmetries for guaranteed integ.
	Pose estimation with range-only obs.

Development

	Changelog
	C++ API technical documentation
	Information for developers

 codac

 	 »
	Codac: constraint-programming for robotics
	

 View page source

Codac: constraint-programming for robotics¶

Codac (Catalog Of Domains And Contractors) is a C++/Python library providing tools for constraint programming over reals, trajectories and sets. It has many applications in state estimation or robot localization.

What is constraint programming?

In this paradigm, users concentrate on the properties of a solution to be found (e.g. the pose of a robot, the location of a landmark) by stating constraints on the variables. Then, a solver performs constraint propagation on the variables and provides a reliable set of feasible solutions corresponding to the problem. In this approach, the user concentrates on what is the problem instead of how to solve it, thus leaving the computer dealing with the how.

What about mobile robotics?

In the field of robotics, complex problems such as non-linear state estimation, parameter estimation, delays, SLAM or kidnapped robot problems can be solved in a very few steps by using constraint programming. Even though the Codac library is not meant to target only robotics problems, the design of its interface has been largely influenced by the needs of the above class of applications. Codac provides solutions to deal with these problems, that are usually hardly solvable by conventional methods such as particle approaches or Kalman filters.

In a nutshell, Codac is a constraint programming framework providing tools to easily solve a wide range of problems.

Contents of this page

	Codac: constraint-programming for robotics

	Getting started: 2 minutes to Codac

	User manual

	Tutorial for mobile robotics

	License and support

	Contributors

	Main related publications

	How to cite this project?

Keywords

		constraint-programming

	mobile robotics

	interval-analysis

		dynamical-systems

	tubes

	localization

		state-estimation

	SLAM

	solver

Getting started: 2 minutes to Codac¶

We only have to define domains for our variables and a set of contractors to implement our constraints.
The core of Codac stands on a Contractor Network representing a solver.

In a few steps, a problem is solved by

	Defining the initial domains (boxes, tubes) of our variables (vectors, trajectories)

	Take contractors from a catalog of already existing operators, provided in the library

	Add the contractors and domains to a Contractor Network

	Let the Contractor Network solve the problem

	Obtain a reliable set of feasible variables

For instance.

Let us consider the robotic problem of localization with range-only measurements. A robot is described by the state vector \(\mathbf{x}=\{x_1,x_2,\psi,\vartheta\}^\intercal\) depicting its position, its heading and its speed. It evolves between three landmarks \(\mathbf{b}_1\), \(\mathbf{b}_2\), \(\mathbf{b}_3\) and measures distances \(y_i\) from these points.

The problem is defined by classical state equations:

\[\begin{split}\left\{ \begin{array}{l}
 \dot{\mathbf{x}}(t)=\mathbf{f}\big(\mathbf{x}(t),\mathbf{u}(t)\big)\\
 y_i=g\big(\mathbf{x}(t_i),\mathbf{b}_i\big)
\end{array}\right.\end{split}\]

where \(\mathbf{u}(t)\) is the input of the system, known with some uncertainties. \(\mathbf{f}\) and \(g\) are non-linear functions.

First step.

Defining domains for our variables.

We have three variables evolving with time: the trajectories \(\mathbf{x}(t)\), \(\mathbf{v}(t)=\dot{\mathbf{x}}(t)\), \(\mathbf{u}(t)\). We define three tubes to enclose them:

Python

C++

dt = 0.01 # timestep for tubes accuracy
tdomain = Interval(0, 3) # temporal limits [t_0,t_f]=[0,3]

x = TubeVector(tdomain, dt, 4) # 4d tube for state vectors
v = TubeVector(tdomain, dt, 4) # 4d tube for derivatives of the states
u = TubeVector(tdomain, dt, 2) # 2d tube for inputs of the system

float dt = 0.01; // timestep for tubes accuracy
Interval tdomain(0, 3); // temporal limits [t_0,t_f]=[0,3]

TubeVector x(tdomain, dt, 4); // 4d tube for state vectors
TubeVector v(tdomain, dt, 4); // 4d tube for derivatives of the states
TubeVector u(tdomain, dt, 2); // 2d tube for inputs of the system

We assume that we have measurements on the headings \(\psi(t)\) and the speeds \(\vartheta(t)\), with some bounded uncertainties defined by intervals \([e_\psi]=[-0.01,0.01]\), \([e_\vartheta]=[-0.01,0.01]\):

Python

C++

x[2] = Tube(measured_psi, dt).inflate(0.01) # measured_psi is a set of measurements
x[3] = Tube(measured_speed, dt).inflate(0.01)

x[2] = Tube(measured_psi, dt).inflate(0.01); // measured_psi is a set of measurements
x[3] = Tube(measured_speed, dt).inflate(0.01);

Finally, we define the domains for the three range-only observations \((t_i,y_i)\) and the position of the landmarks. The distances \(y_i\) are bounded by the interval \([e_y]=[-0.1,0.1]\).

Python

C++

e_y = Interval(-0.1,0.1)
y = [Interval(1.9+e_y), Interval(3.6+e_y), \ # set of range-only observations
 Interval(2.8+e_y)]
b = [[8,3],[0,5],[-2,1]] # positions of the three 2d landmarks
t = [0.3, 1.5, 2.0] # times of measurements

Interval e_y(-0.1,0.1);
vector<Interval> y = {1.9+e_y, 3.6+e_y, 2.8+e_y}; // set of range-only observations
vector<Vector> b = {{8,3}, {0,5}, {-2,1}}; // positions of the three 2d landmarks
vector<double> t = {0.3, 1.5, 2.0}; // times of measurements

Second step.

Defining contractors to deal with the state equations.

The distance function \(g(\mathbf{x},\mathbf{b})\) between the robot and a landmark corresponds to the CtcDist contractor provided in the library. The evolution function \(\mathbf{f}(\mathbf{x},\mathbf{u})=\big(x_4\cos(x_3),x_4\sin(x_3),u_1,u_2\big)\) can be handled by a custom-built contractor:

Python

C++

ctc_f = CtcFunction(
 Function("v[4]", "x[4]", "u[2]",
 "(v[0]-x[3]*cos(x[2]) ; v[1]-x[3]*sin(x[2]) ; v[2]-u[0] ; v[3]-u[1])"))

CtcFunction ctc_f(
 Function("v[4]", "x[4]", "u[2]",
 "(v[0]-x[3]*cos(x[2]) ; v[1]-x[3]*sin(x[2]) ; v[2]-u[0] ; v[3]-u[1])"));

Third step.

Adding the contractors to a network, together with there related domains, is as easy as:

Python

C++

cn = ContractorNetwork() # creating a network

cn.add(ctc_f, [v, x, u]) # adding the f constraint

for i in range (0,len(y)): # we add the observ. constraint for each range-only measurement

 p = cn.create_interm_var(IntervalVector(4)) # intermed. variable (state at t_i)

 # Distance constraint: relation between the state at t_i and the ith beacon position
 cn.add(ctc.dist, [cn.subvector(p,0,1), b[i], y[i]])

 # Eval constraint: relation between the state at t_i and all the states over [t_0,t_f]
 cn.add(ctc.eval, [t[i], p, x, v])

ContractorNetwork cn; // creating a network
cn.add(ctc_f, {v, x, u}); // adding the f constraint

for(int i = 0 ; i < 3 ; i++) // we add the observ. constraint for each range-only measurement
{
 IntervalVector& p = cn.create_interm_var(IntervalVector(4)); // intermed. variable (state at t_i)

 // Distance constraint: relation between the state at t_i and the ith beacon position
 cn.add(ctc::dist, {cn.subvector(p,0,1), b[i], y[i]});

 // Eval constraint: relation between the state at t_i and all the states over [t_0,t_f]
 cn.add(ctc::eval, {t[i], p, x, v});
}

Fourth step.

Solving the problem.

Python

C++

cn.contract()

cn.contract();

Fifth step.

Obtain a reliable set of feasible positions: a tube, depicted in blue. The three yellow robots illustrate the three instants of observation. The white line is the unknown truth.

[image: _images/rangeonly-nox0.png]

You just solved a non-linear state-estimation without knowledge about initial condition.

See the full example on Github: in C++, in Python or in MATLAB.

In the tutorial and in the examples folder of this library, you will find more advanced problems such as Simultaneous Localization And Mapping (SLAM), data association problems or delayed systems.

User manual¶

Want to use Codac? The first thing to do is to install the library, or try it online:

	Try Codac online with Python
	Installing the Codac library
	Start a Python project
	Start a C++ project

Then you have two options: read the details about the features of Codac (domains, tubes, contractors, slices, and so on) or jump to the standalone tutorial about how to use Codac for mobile robotics, with telling examples.

Dependencies

IBEX

[image: _images/logo_ibex.jpg]

Note that Codac stands on the IBEX library for interval analysis computations and static contractors on boxes.

Read the IBEX documentation.

	Introduction	Constraint programming
	The Codac library
	What about the IBEX library?

	Basic structures for real values	Vectors, matrices
	Trajectories (signals)

	Domains: sets of feasible values	Intervals and boxes
	Tubes: sets of trajectories

	Inclusion functions	An extended interval calculator
	Syntax
	Function formatting

	Catalog of contractors for static constraints	Static contractors

	Catalog of contractors for dynamical systems	CtcDeriv: \(\dot{x}(t)=v(t)\)
	CtcEval: \(y_i=x(t_i)\)
	CtcLohner: \(\dot{\mathbf{x}}(t)=\mathbf{f}\big(\mathbf{x}(t)\big)\)
	CtcPicard: \(\dot{\mathbf{x}}(t)=\mathbf{f}\big(\mathbf{x}(t)\big)\)
	CtcDelay: \(x(t)=y(t+a)\)
	CtcLinobs: \(\dot{\mathbf{x}}=\mathbf{Ax+Bu}\)
	CtcChain: \(\dot{x_1}=x_2,~\dot{x_2}=x_3\)

	Contractor Networks	Building a solver

	Graphical tools	The VIBes viewer
	Display tubes and trajectories w.r.t. time

	FAQ: Frequently Asked Questions
	Changelog
	C++ API technical documentation
	Information for developers

International tutorial

[image: _images/logo_icra.png]

[image: _images/logo_iros.png]

This tutorial has been proposed in the IROS 2020 Conference and the ICRA 2020 Conference.

Tutorial for mobile robotics¶

The following tutorial is standalone and tells about how to use Codac for mobile robotic applications, with telling examples:

	Main page
	Introduction
	A. Intervals and contractors
	B. Static range-only localization
	C. Static range-bearing loc.
	D. Building our own contractor
	E. Hello tubes
	F. Localization with asynchronous measurements
	G. Localization with data association
	H. Range-only SLAM

License and support¶

This software is under GNU Lesser General Public License.

For recent improvements and activities, see the Codac Github repository.
You can post bug reports and feature requests on the Issues page.

Contributors¶

		Simon Rohou

	Benoît Desrochers

	Luc Jaulin

	Gilles Chabert

		Auguste Bourgois

	Julien Damers

	Fabrice Le Bars

	Raphael Voges

		Quentin Brateau

	Thomas Le Mézo

	Cyril Bouvier

	Bertrand Neveu

		Peter Franek

	Gilles Trombettoni

	Verlein Radwan

	Joris Tillet

Main related publications¶

	Year
	Title (download paper)
	Authors
	Journal

	2022
	Lie symmetries applied to interval integration
	Damers, Jaulin, Rohou
	Automatica

	2022
	Lie Groups applied to localisation of mobile robots
	Damers
	PhD thesis

	2021
	Safe and collaborative autonomous underwater docking
	Bourgois
	PhD thesis

	2020
	Set-membership state estimation by solving data association
	Rohou, Desrochers, Jaulin
	ICRA Conference

	2020
	Bounded-error visual-LiDAR odometry on mobile robots…
	Voges
	PhD thesis

	2019
	Reliable robot localization: a constraint-programming approach…
	Rohou, Jaulin, Mihaylova, Le Bars, Veres
	ISTE Ltd, Wiley

	2018
	Simultaneous Localization and Mapping in Unstructured Environments
	Desrochers
	PhD thesis

	2018
	Proving the existence of loops in robot trajectories
	Rohou, Franek, Aubry, Jaulin
	International Journal of Robotics Research

	2018
	Reliable non-linear state estimation involving time uncertainties
	Rohou, Jaulin, Mihaylova, Le Bars, Veres
	Automatica

	2017
	Guaranteed computation of robot trajectories
	Rohou, Jaulin, Mihaylova, Le Bars, Veres
	Robotics and Autonomous Systems

	2016
	A Minimal contractor for the Polar equation
	Desrochers, Jaulin
	Engineering Applications of Artificial Intelligence

	2013
	Loop detection of mobile robots using interval analysis
	Aubry, Desmare, Jaulin
	Automatica

How to cite this project?¶

We suggest the following BibTeX template to cite Codac in scientific discourse:

@misc{codac,
 author = {Rohou, Simon and Desrochers, Benoit and others},
 year = {2022},
 note = {http://codac.io},
 title = {The {Codac} library -- {C}onstraint-programming for robotics}
}

 Next

 Previous

 © Copyright 2020, Codac Team

 Built with Sphinx using a

 theme

 provided by Read the Docs.

