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Brunovsky decomposition for dynamic interval localization

Problem statement
Introduction

Let us consider the following non-linear system:

ẋ(t) = f(x(t),u(t)), (1a)
yi = g(x(ti)), (1b)

– no prior knowledge about the states x(t) ∈ Rn

– but a discrete set of non-linear state observations yi ∈ R

The problem is difficult:
– non-linearities in f , g
– uncertainties on u(·), yi, ti, . . .
– no initial condition

=⇒ x(t) ∈ [−∞,∞]n

=⇒ no linearization point

⇒ can be easily dealt with interval methods, but not in any cases

Rohou, Jaulin 27/06/2023 3 / 27



Brunovsky decomposition for dynamic interval localization

Problem statement
Introduction

Let us consider the following non-linear system:
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Test case: full robotic state estimation
Introduction

Landmarks-based localization of a mobile robot:
– x ∈ R4

– x1, x2: position
– x3: heading
– x4: speed

– discrete set of range-only measurements
– yi ∈ R
– measurements from known landmarks ma, mb

x2

x1

mb

ma
y1

y3

y4

y2
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Evolution equation f (for a wheeled robot)
Introduction

Let us consider the system described by the following equations:

f


ẋ1 = x4 cos(x3)
ẋ2 = x4 sin(x3)
ẋ3 = u1
ẋ4 = u2

(2)

The problem is difficult when x3 is unknown.
Information only comes from x1, x2, u.
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Evolution equation f (for a wheeled robot)
Introduction

Overview of the «Brunovsky» approach:

∫∫ ∫
∫

×

×

u1

ẋ1

ẋ2

x1

x2

u2 x4 x3

sin

cos

⇐⇒ ∫∫

×u1

x3 sin
× ∫ ∫u2

+

x4

ẋ1ẍ1 x1
cos

× ×
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Brunovsky decomposition
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Brunovsky decomposition for dynamic interval localization

Flat systems
Brunovsky decomposition

We consider the following system:{
ẋ = f(x,u)
z = h(x),

(3)

with z ∈ Rm: output vector used with a control point of view, and
both f and h assumed to be smooth.
u ∈ Rm and z ∈ Rm.

The system is said to be flat if there exists two continuous
functions φ and ψ and integers κ1, . . . , κm such that x = φ

(
z1, ż1, . . . , z

(κ1−1)
1 , . . . , zm, żm, . . . , z

(κm−1)
m

)
u = ψ

(
z1, ż1, . . . , z

(κ1)
1 , . . . , zm, żm, . . . , z

(κm)
m

)
.

(4)
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Brunovsky decomposition for dynamic interval localization

Flat systems
Brunovsky decomposition

Usually, functions φ and ψ are obtained in two steps:

1. The derivation step, that computes
symbolically z1, ż1, . . . , z

(κ1)
1 , . . . . . . , zm, żm, . . . , z

(κm)
m as

functions of x and u, using Eq. (3).
We obtain an expression of the form

z1
ż1
...

z
(κm)
m

 = λ

(
x
u

)
. (5)

2. The inversion step in order to obtain φ and ψ

Rohou, Jaulin 27/06/2023 9 / 27
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Flat systems: example
Brunovsky decomposition

Consider the system 
ẋ1 = x1 + x2
ẋ2 = x22 + u
z = x1.

(6)

For the derivation step, we compute z, ż, z̈, . . . with respect to
x and u until u occurs. We get

λ


z = x1
ż = ẋ1 = x1 + x2
z̈ = ẋ1 + ẋ2 = x1 + x2 + x22 + u.

(7)

Since we had to derive twice, we conclude that the Kronecker
index is κ = 2 which corresponds to the dimension of
x = (x1, x2)

ᵀ. As a consequence, the output z is flat.
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Flat systems: Brunovsky decomposition
Brunovsky decomposition

The differential flat system:
– ẋ(t) = f(x(t),u(t))
– with flat outputs z1, . . . , zm
– and sensor outputs y

admits the following Brunovsky decomposition:

ẋ(t) = f(x(t),u(t))
z = h(x)
y = g(x)

⇐⇒




z1
ż1
...

z
(κm)
m

 = λ

(
x
u

)

z
(κ1)
1

∫
→ · · ·

∫
→ ż1

∫
→ z1

...

z
(κm)
m

∫
→ · · ·

∫
→ żm

∫
→ zm

y = g (x)

(8)
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Brunovsky decomposition for dynamic interval localization

Rewriting system
Brunovsky decomposition

ẋ(t) = f(x(t),u(t))
z = h(x)
y = g(x)

⇐⇒

∫ ∫ ∫
· · ·

∫ ∫ ∫
· · ·

··
·

λ

z
(κm)
m

z
(κ1)
1 z1

zm

g

x
yu

– Introducing so-called Chains of integrators:∫
→
∫
→
∫
→ . . .

– Integrator operations
∫

are separated from
non-linear relations: λ, g
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Rewriting system: application on the wheeled robot
Brunovsky decomposition

Decomposition of the evolution function ẋ = f(x,u):

From the literature, let us take z = (x1, x2)
ᵀ

(i) ẋ1 = x4 cos(x3)
(ii) ẋ2 = x4 sin(x3)
(iii) ẋ3 = u1

(iv) ẋ4 = u2



⇐⇒

(I)




z1
z2

ż1
ż2
z̈1
z̈2

 =


x1

x2

x4 cos(x3)
x4 sin(x3)

u2 cos(x3)− u1x4 sin(x3)
u2 sin(x3) + u1x4 cos(x3)


︸ ︷︷ ︸

λ(x,u)

(II)



z̈1

∫
→ ż1

∫
→

z1

z̈2

∫
→ ż2

∫
→

z2

– Block (I) is only made of non-linear static equations
– Block (II) is made of pure chains of integrators
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From the literature, let us take z = (x1, x2)

ᵀ
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Rewriting system: application on the wheeled robot
Brunovsky decomposition




z1
z2
ż1
ż2
z̈1
z̈2

 =


x1
x2

x4 cos(x3)
x4 sin(x3)

u2 cos(x3)− u1x4 sin(x3)
u2 sin(x3) + u1x4 cos(x3)
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λ(x,u) z̈1

∫
→ ż1

∫
→ z1

z̈2

∫
→ ż2

∫
→ z2
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Involved contractors:
– Cλ([x], [u], [z], [ż], [z̈])

– C∫∫ ([z1](·), [ż1](·), [z̈1](·))
– C∫∫ ([z2](·), [ż2](·), [z̈2](·))
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ż1
ż2
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→ ż2

∫
→ z2

[x](·)
[u](·)

[z1](·)
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– C∫∫ ([z1](·), [ż1](·), [z̈1](·))
– C∫∫ ([z2](·), [ż2](·), [z̈2](·))
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Section 3

The integrator chain contractor C∫∫
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Brunovsky decomposition for dynamic interval localization

Definition
The integrator chain contractor C∫∫

A dedicated integrator chain contractor, denoted by C∫∫ , has to be
provided for:

z(κ)
∫
→ · · ·

∫
→ ż

∫
→ z (9)

−→ it allows to accurately propagate information from one signal
through its primitives and derivatives.

What about a decomposition?

z(κ)
∫
→ z(κ−1), . . . , z̈

∫
→ ż, . . . , ż

∫
→ z. (10)

Strong wrapping effect
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∫
→ z (9)

−→ it allows to accurately propagate information from one signal
through its primitives and derivatives.

What about a decomposition?

z(κ)
∫
→ z(κ−1), . . . , z̈

∫
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Brunovsky decomposition for dynamic interval localization

Linear state estimator
The integrator chain contractor C∫∫

Let us consider the integrator chain constraint involving the signals(
z(0), z(1), . . . , z(κ), w

)
and defined as:

w

∫
→ z(κ)

∫
→ · · ·

∫
→ ż

∫
→ z (11)

This chain can be cast into the following linear system:

ż(t) =


0 1 0 · · ·
0 0 1
...

...
...

0 0 0 · · · 1
0 0 0 · · · 0


︸ ︷︷ ︸

A

z(t) +


0
0
...

1


︸ ︷︷ ︸

B

w(t), (12)

where w(·) is known to be inside a tube [w](·).
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Brunovsky decomposition for dynamic interval localization

Linear state estimator
The integrator chain contractor C∫∫

Considering for
instance the chain:

w

∫
→ z2

∫
→ z1

and prior 2d sets Ž(·)
implemented as tubes
[z1]× [z2](·) (upper
part of the figure)

t

z2(·)

t

z1(·)δ δ

t1 t1 + δ t1 t1 + δ

Ž1(·)
Ž2(·)

z1(t1 + δ)

z2(t1)

z1(t1) z1(t1 + δ)

One computation step of C∫∫ ([z1](·), [z2](·), [w](·)
(result is the blue hatched part).

State observations are processed as restrictions from the tubes.
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Ž1(·)
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Brunovsky decomposition for dynamic interval localization

Linear state estimator
The integrator chain contractor C∫∫

Minimal outputs can be obtained, as restrictions always correspond
to the intersection of a polygon and a box, which can be computed
accurately.

Clinobs: an optimal contractor for systems ż(t) = Az(t) + Bw(t).

� Exact bounded-error continuous-time linear state estimator
S. Rohou, L. Jaulin, Systems & Control Letters, 2021

� An ellipsoidal predictor-corrector state estimation scheme for
linear continuous-time systems with bounded parameters and
bounded measurement errors
A. Rauh, S. Rohou, L. Jaulin, Frontiers In Control Engineering, 2022
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Section 4

Back to the localization problem
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Contractor network
Back to the localization problem

Mobile robotic state equations:

ẋ(t) = f(x(t),u(t)), (13a)
yi = g(x(ti)), (13b)

Corresponding list of contractors,
resulting from the Brunovsky decomposition:

– Cλ([x], [u], [z], [ż], [z̈])

– C∫∫ ([z1](·), [ż1](·), [z̈1](·))
– C∫∫ ([z2](·), [ż2](·), [z̈2](·))
– Cg([x](ti), [yi])
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Reproducible example
Back to the localization problem

Unknown states:

x(t) =


10 cos(t)
5 sin(2t)

atan2 (10 cos(2t),−10 sin(t))√
(−10 sin(t)) 2 + (10 cos(2t)) 2

 (14)

Known inputs:

u(t) =


2 sin(t) sin(2t) + cos(t) cos(2t)

sin2(t) + cos2(2t)
10 cos(t) · sin(t)− 20 cos(2t) · sin(2t)√

sin2(t) + cos2(2t)

 (15)

Observation equation:

yj(ti) =

√(
x1(ti)−mj

1

)2
+
(
x2(ti)−mj

2

)2
(16)
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Reproducible example
Back to the localization problem

Two known landmarks: ma = (−5, 6) and mb = (0,−4)

ti [ya](ti)

0.75 [12.333,12.383]

2.25 [10.938,10.988]

ti [yb](ti)

1.50 [4.733,4.783]

3.00 [10.211,10.261]

Table: Set of four bounded measurements (ti, [y](ti)).

The simulation is run for t ∈ [0, 3].
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Results
Back to the localization problem

-10 -6 -2 2 6 10

-5

-3

-1

1

3

5

px

py

Set [x](·) of feasible states projected in two dimensions. The unknown planar
trajectory remains enclosed in the tube.

The simulation runs in 36 seconds.
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Results
Back to the localization problem

0 1 2 3

2.5

3.5

t

θ

The tube [x3](·) of feasible headings. The actual but unknown truth is plotted in
white and guaranteed to be enclosed in the computed [x3](·).

The simulation runs in 36 seconds.
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Section 5

Conclusion
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Interval Brunovsky decomposition for non-linear systems
Conclusion

The problem is difficult due to:
– non-linearities in f , g
– uncertainties on u(·), yi, ti, . . .
– no initial condition on x =⇒ no linearization point

Easily dealt with a Brunovsky approach coupled with interval
methods, if the system is flat:
1. symbolic decomposition: the differential part is separated from

the non-linear equations
2. an interval method is applied, with an optimal operator for the

differential part expressed as a linear system
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Conclusion

� Brunovsky decomposition for dynamic interval localization
S. Rohou, L. Jaulin, IEEE Transactions on Automatic Control, 2023

Code available in the Codac library:
Interval tools for constraint programming over reals, trajectories and sets.
http://codac.io
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