Brunovsky decomposition for dynamic interval localization

Simon Rohou, Luc Jaulin

ENSTA Bretagne, Lab-STICC, UMR CNRS 6285, Brest, France

SWIM 2023, Angers $27^{\rm th}$ June 2023

Section 1

Introduction

Problem statement

Let us consider the following non-linear system:

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)),$$

$$y_i = g(\mathbf{x}(t_i)),$$
(1a)
(1b)

- no prior knowledge about the states $\mathbf{x}(t) \in \mathbb{R}^n$
- but a discrete set of non-linear state observations $y_i \in \mathbb{R}$

Problem statement

Let us consider the following non-linear system:

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)),$$

$$y_i = g(\mathbf{x}(t_i)),$$
(1a)
(1b)

– no prior knowledge about the states $\mathbf{x}(t) \in \mathbb{R}^n$

– but a discrete set of non-linear state observations $y_i \in \mathbb{R}$

The problem is difficult:

- non-linearities in ${\bf f},\ g$
- uncertainties on $\mathbf{u}(\cdot)$, y_i , t_i , \ldots
- no initial condition

$$\implies \mathbf{x}(t) \in [-\infty,\infty]^n$$

 \implies no linearization point

Problem statement

Let us consider the following non-linear system:

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)),$$

$$y_i = g(\mathbf{x}(t_i)),$$
(1a)
(1b)

– no prior knowledge about the states $\mathbf{x}(t) \in \mathbb{R}^n$

– but a discrete set of non-linear state observations $y_i \in \mathbb{R}$

The problem is difficult:

- non-linearities in ${\bf f},\ g$
- uncertainties on $\mathbf{u}(\cdot)$, y_i , t_i , ...
- no initial condition
 - $\implies \mathbf{x}(t) \in [-\infty, \infty]^n$ $\implies \text{no linearization point}$

 \Rightarrow can be easily dealt with interval methods, but not in any cases

Test case: full robotic state estimation

Landmarks-based localization of a mobile robot:

 $-\mathbf{x} \in \mathbb{R}^4$

- x_1 , x_2 : position
- x_3 : heading
- x_4 : speed
- discrete set of range-only measurements
 - $-y_i \in \mathbb{R}$
 - measurements from known landmarks \mathbf{m}_a , \mathbf{m}_b

Evolution equation f (for a wheeled robot)

Let us consider the system described by the following equations:

$$\mathbf{f} \begin{cases} \dot{x}_1 = x_4 \cos(x_3) \\ \dot{x}_2 = x_4 \sin(x_3) \\ \dot{x}_3 = u_1 \\ \dot{x}_4 = u_2 \end{cases}$$
(2)

Evolution equation f (for a wheeled robot)

Let us consider the system described by the following equations:

$$\mathbf{f} \begin{cases} \dot{x}_1 = x_4 \cos(x_3) \\ \dot{x}_2 = x_4 \sin(x_3) \\ \dot{x}_3 = u_1 \\ \dot{x}_4 = u_2 \end{cases}$$
(2)

Evolution equation f (for a wheeled robot)

Let us consider the system described by the following equations:

$$\mathbf{f} \begin{cases} \dot{x}_1 = x_4 \cos(x_3) \\ \dot{x}_2 = x_4 \sin(x_3) \\ \dot{x}_3 = u_1 \\ \dot{x}_4 = u_2 \end{cases}$$
(2)

The problem is difficult when x_3 is unknown. Information only comes from x_1 , x_2 , **u**.

Evolution equation f (for a wheeled robot)

Let us consider the system described by the following equations:

$$\mathbf{f} \begin{cases} \dot{x}_1 = x_4 \cos(x_3) \\ \dot{x}_2 = x_4 \sin(x_3) \\ \dot{x}_3 = u_1 \\ \dot{x}_4 = u_2 \end{cases}$$
(2)

The problem is difficult when x_3 is unknown. Information only comes from x_1 , x_2 , **u**.

Evolution equation f (for a wheeled robot)

Overview of the «Brunovsky» approach:

Evolution equation f (for a wheeled robot)

Overview of the «Brunovsky» approach:

Evolution equation f (for a wheeled robot)

Overview of the «Brunovsky» approach:

Section 2

Brunovsky decomposition

Flat systems

We consider the following system:

$$\begin{cases} \dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}) \\ \mathbf{z} = \mathbf{h}(\mathbf{x}), \end{cases}$$
(3)

with $\mathbf{z} \in \mathbb{R}^m$: output vector used with a control point of view, and both \mathbf{f} and \mathbf{h} assumed to be smooth. $\mathbf{u} \in \mathbb{R}^m$ and $\mathbf{z} \in \mathbb{R}^m$.

The system is said to be flat if there exists two continuous functions ϕ and ψ and integers $\kappa_1, \ldots, \kappa_m$ such that

$$\begin{cases} \mathbf{x} = \phi\left(z_1, \dot{z}_1, \dots, z_1^{(\kappa_1 - 1)}, \dots, z_m, \dot{z}_m, \dots, z_m^{(\kappa_m - 1)}\right) \\ \mathbf{u} = \psi\left(z_1, \dot{z}_1, \dots, z_1^{(\kappa_1)}, \dots, z_m, \dot{z}_m, \dots, z_m^{(\kappa_m)}\right). \end{cases}$$
(4)

Brunovsky decomposition Flat systems

Usually, functions ϕ and ψ are obtained in two steps:

 The derivation step, that computes symbolically z₁, ż₁,..., z₁^(κ₁),...., z_m, ż_m,..., z_m^(κ_m) as functions of x and u, using Eq. (3). We obtain an expression of the form

$$\begin{pmatrix} z_1 \\ \dot{z}_1 \\ \vdots \\ z_m^{(\kappa_m)} \end{pmatrix} = \lambda \begin{pmatrix} \mathbf{x} \\ \mathbf{u} \end{pmatrix}.$$
 (5)

2. The inversion step in order to obtain ϕ and ψ

Flat systems: example

Consider the system

$$\begin{cases} \dot{x}_1 = x_1 + x_2 \\ \dot{x}_2 = x_2^2 + u \\ z = x_1. \end{cases}$$
(6)

Flat systems: example

Consider the system

$$\begin{cases} \dot{x}_1 = x_1 + x_2 \\ \dot{x}_2 = x_2^2 + u \\ z = x_1. \end{cases}$$
(6)

For the derivation step, we compute $z,\dot{z},\ddot{z},\ldots$ with respect to ${\bf x}$ and u until u occurs. We get

$$\lambda \begin{cases} z = x_1 \\ \dot{z} = \dot{x}_1 = x_1 + x_2 \\ \ddot{z} = \dot{x}_1 + \dot{x}_2 = x_1 + x_2 + x_2^2 + u. \end{cases}$$
(7)

Flat systems: example

Consider the system

$$\begin{cases} \dot{x}_1 = x_1 + x_2 \\ \dot{x}_2 = x_2^2 + u \\ z = x_1. \end{cases}$$
(6)

For the derivation step, we compute $z, \dot{z}, \ddot{z}, \ldots$ with respect to \mathbf{x} and u until u occurs. We get

$$\lambda \begin{cases} z = x_1 \\ \dot{z} = \dot{x}_1 = x_1 + x_2 \\ \ddot{z} = \dot{x}_1 + \dot{x}_2 = x_1 + x_2 + x_2^2 + u. \end{cases}$$
(7)

Since we had to derive twice, we conclude that the Kronecker index is $\kappa = 2$ which corresponds to the dimension of $\mathbf{x} = (x_1, x_2)^{\mathsf{T}}$. As a consequence, the output z is flat.

Flat systems: Brunovsky decomposition

The differential flat system:

- $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t))$
- with flat outputs z_1,\ldots,z_m
- and sensor outputs ${\bf y}$

Flat systems: Brunovsky decomposition

The differential flat system:

- $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t))$
- with flat outputs z_1,\ldots,z_m
- and sensor outputs ${\bf y}$

admits the following Brunovsky decomposition:

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)) \\ \mathbf{z} = \mathbf{h}(\mathbf{x}) \\ \mathbf{y} = \mathbf{g}(\mathbf{x}) \end{cases} \iff \begin{cases} \begin{pmatrix} z_1 \\ \dot{z}_1 \\ \vdots \\ z_m^{(\kappa_m)} \end{pmatrix} = \lambda \begin{pmatrix} \mathbf{x} \\ \mathbf{u} \end{pmatrix} \\ z_1^{(\kappa_m)} \stackrel{f}{\to} \cdots \stackrel{f}{\to} \dot{z}_1 \stackrel{f}{\to} z_1 \\ \vdots \\ z_m^{(\kappa_m)} \stackrel{f}{\to} \cdots \stackrel{f}{\to} \dot{z}_m \stackrel{f}{\to} z_m \\ \mathbf{y} = \mathbf{g}(\mathbf{x}) \end{cases}$$
(8)

Brunovsky decomposition Rewriting system

Brunovsky decomposition Rewriting system

– Introducing so-called Chains of integrators: $\int \rightarrow \int \rightarrow \int \rightarrow \dots$

Brunovsky decomposition Rewriting system

- Introducing so-called *Chains of integrators*: $\int \rightarrow \int \rightarrow \int \rightarrow \dots$
- Integrator operations \int are separated from non-linear relations: λ , g

Rewriting system: application on the wheeled robot

Decomposition of the evolution function $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u})$:

(i)
$$\dot{x}_1 = x_4 \cos(x_3)$$

(ii) $\dot{x}_2 = x_4 \sin(x_3)$
(iii) $\dot{x}_3 = u_1$
(iv) $\dot{x}_4 = u_2$

Rewriting system: application on the wheeled robot

Decomposition of the evolution function $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u})$: From the literature, let us take $\mathbf{z} = (x_1, x_2)^{\mathsf{T}}$

Rewriting system: application on the wheeled robot

Decomposition of the evolution function $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u})$: From the literature, let us take $\mathbf{z} = (x_1, x_2)^{\mathsf{T}}$

$$\begin{array}{c} (i) \quad \dot{x}_{1} = x_{4} \cos(x_{3}) \\ (ii) \quad \dot{x}_{2} = x_{4} \sin(x_{3}) \\ (iii) \quad \dot{x}_{3} = u_{1} \\ (iv) \quad \dot{x}_{4} = u_{2} \end{array} \right\} \iff (I) \quad \begin{cases} \begin{pmatrix} z_{1} \\ z_{2} \\ \dot{z}_{1} \\ \dot{z}_{2} \\ \end{pmatrix} = \underbrace{\begin{pmatrix} x_{1} \\ x_{2} \\ x_{4} \cos(x_{3}) \\ x_{4} \sin(x_{3}) \\ \end{pmatrix}}_{\lambda(\mathbf{x}, \mathbf{u})}$$

$$(II) \quad \begin{cases} \dot{z}_{1} \stackrel{f}{\rightarrow} z_{1} \\ \dot{z}_{2} \stackrel{f}{\rightarrow} z_{2} \\ \end{pmatrix}$$

Rewriting system: application on the wheeled robot

Decomposition of the evolution function $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u})$: From the literature, let us take $\mathbf{z} = (x_1, x_2)^{\mathsf{T}}$

$$\begin{pmatrix} i) & \dot{x}_{1} = x_{4}\cos(x_{3}) \\ (ii) & \dot{x}_{2} = x_{4}\sin(x_{3}) \\ (iii) & \dot{x}_{3} = u_{1} \\ (iv) & \dot{x}_{4} = u_{2} \end{pmatrix} \iff \begin{pmatrix} I) \\ \begin{cases} \begin{pmatrix} z_{1} \\ z_{2} \\ \dot{z}_{1} \\ \ddot{z}_{2} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{2} \\ x_{4}\cos(x_{3}) \\ u_{2}\cos(x_{3}) - u_{1}x_{4}\sin(x_{3}) \\ u_{2}\sin(x_{3}) + u_{1}x_{4}\cos(x_{3}) \end{pmatrix}$$

$$(II) \begin{cases} z_1 & z_1 & z_1 \\ \vdots & \vdots & \vdots \\ z_2 & \to & z_2 \\ \vdots & \vdots & z_2 \\ \vdots & \vdots & z_2 \end{cases}$$

Rewriting system: application on the wheeled robot

Decomposition of the evolution function $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u})$: From the literature, let us take $\mathbf{z} = (x_1, x_2)^{\mathsf{T}}$

$$\begin{array}{c} (i) \quad \dot{x}_{1} = x_{4}\cos(x_{3}) \\ (ii) \quad \dot{x}_{2} = x_{4}\sin(x_{3}) \\ (iii) \quad \dot{x}_{3} = u_{1} \\ (iv) \quad \dot{x}_{4} = u_{2} \end{array} \right\} \iff (I) \quad \begin{cases} \begin{pmatrix} z_{1} \\ z_{2} \\ \dot{z}_{1} \\ \ddot{z}_{2} \end{pmatrix} = \underbrace{\begin{pmatrix} x_{1} \\ x_{2} \\ x_{4}\cos(x_{3}) \\ u_{2}\cos(x_{3}) - u_{1}x_{4}\sin(x_{3}) \\ u_{2}\sin(x_{3}) + u_{1}x_{4}\cos(x_{3}) \end{pmatrix}}_{\lambda(\mathbf{x},\mathbf{u})}$$

$$(II) \begin{cases} \ddot{z}_1 \stackrel{f}{\to} \dot{z}_1 \stackrel{f}{\to} z_1 \\ \ddot{z}_2 \stackrel{f}{\to} \dot{z}_2 \stackrel{f}{\to} z_2 \end{cases}$$

- Block (I) is only made of non-linear static equations
- Block (II) is made of pure chains of integrators

$$\begin{cases} \left(\begin{array}{c} z_1\\ z_2\\ \dot{z}_1\\ \dot{z}_2\\ \dot{z}_1\\ \dot{z}_2 \end{array}\right) = \left(\begin{array}{c} x_1\\ x_2\\ x_4\cos(x_3)\\ x_4\sin(x_3)\\ u_2\cos(x_3) - u_1x_4\sin(x_3)\\ u_2\sin(x_3) + u_1x_4\cos(x_3) \end{array}\right) \\ \\ \left(\begin{array}{c} z_1 \int \dot{z}_1 \int \dot{z}_1\\ \dot{z}_2 \int \dot{z}_2 \int \dot{z}_2 \\ \dot{z}_2 \\ \dot{z}_2 \end{array}\right) \\ \end{cases}$$

$$\begin{cases} \begin{pmatrix} z_1 \\ z_2 \\ z_1 \\ z_2 \\ z_1 \\ z_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_4 \cos(x_3) \\ x_4 \sin(x_3) \\ u_2 \cos(x_3) - u_1 x_4 \sin(x_3) \\ u_2 \sin(x_3) + u_1 x_4 \cos(x_3) \end{pmatrix}$$

$$\begin{cases} z_1 \stackrel{f}{\rightarrow} z_1 \\ z_2 \stackrel{f}{\rightarrow} z_2 \stackrel{f}{\rightarrow} z_2 \\ \lambda(\mathbf{x}, \mathbf{u}) \\ \lambda(\mathbf{x}, \mathbf{u}) \end{cases}$$

$$\begin{cases} z_1 \stackrel{f}{\rightarrow} z_1 \stackrel{f}{\rightarrow} z_1 \\ z_2 \stackrel{f}{\rightarrow} z_2 \stackrel{f}{\rightarrow} z_2 \\ \lambda(\mathbf{x}, \mathbf{u}) \\ z_1 \stackrel{(\cdot)}{\rightarrow} z_2 \stackrel{(\cdot)}{\rightarrow} z_2 \\ z_2 \stackrel{(\cdot)}{\rightarrow} z_2 \stackrel{(\cdot)}{\rightarrow} z_2 \stackrel{(\cdot)}{\rightarrow} z_2 \\ z_2 \stackrel{(\cdot)}{\rightarrow} z_2 \stackrel{(\cdot$$

Section 3

The integrator chain contractor $\mathcal{C}_{\int\!\!\!\int}$

```
The integrator chain contractor \mathcal{C}_{\textit{J}\textit{J}} Definition
```

A dedicated integrator chain contractor, denoted by $\mathcal{C}_{\int\!\!\int}$, has to be provided for:

$$z^{(\kappa)} \xrightarrow{\int} \cdots \xrightarrow{\int} \dot{z} \xrightarrow{f} z \tag{9}$$

 \longrightarrow it allows to accurately propagate information from one signal through its primitives and derivatives.

The integrator chain contractor $\mathcal{C}_{\textit{ff}}$ Definition

A dedicated integrator chain contractor, denoted by $\mathcal{C}_{\int\!\!\int}$, has to be provided for:

$$z^{(\kappa)} \xrightarrow{\int} \cdots \xrightarrow{\int} \dot{z} \xrightarrow{f} z \tag{9}$$

 \longrightarrow it allows to accurately propagate information from one signal through its primitives and derivatives.

What about a decomposition?

$$z^{(\kappa)} \xrightarrow{\int} z^{(\kappa-1)}, \ \dots, \ddot{z} \xrightarrow{\int} \dot{z}, \ \dots, \dot{z} \xrightarrow{\int} z.$$
 (10)

The integrator chain contractor $\mathcal{C}_{\textit{J}\textit{J}}$ Definition

A dedicated integrator chain contractor, denoted by $\mathcal{C}_{\int\!\!\int}$, has to be provided for:

$$z^{(\kappa)} \xrightarrow{\int} \cdots \xrightarrow{\int} \dot{z} \xrightarrow{f} z \tag{9}$$

 \longrightarrow it allows to accurately propagate information from one signal through its primitives and derivatives.

What about a decomposition?

$$z^{(\kappa)} \xrightarrow{\int} z^{(\kappa-1)}, \ \dots, \ \ddot{z} \xrightarrow{\int} \dot{z}, \ \dots, \ \dot{z} \xrightarrow{\int} z.$$
 (10)

Strong wrapping effect

The integrator chain contractor C_{ff} Linear state estimator

Let us consider the integrator chain constraint involving the signals $\left(z^{(0)},z^{(1)},\ldots,z^{(\kappa)},w\right)$ and defined as:

$$w \xrightarrow{\int} z^{(\kappa)} \xrightarrow{\int} \cdots \xrightarrow{\int} \dot{z} \xrightarrow{\int} z$$
 (11)

The integrator chain contractor C_{ff} Linear state estimator

Let us consider the integrator chain constraint involving the signals $(z^{(0)}, z^{(1)}, \ldots, z^{(\kappa)}, w)$ and defined as:

$$w \xrightarrow{\int} z^{(\kappa)} \xrightarrow{\int} \cdots \xrightarrow{\int} \dot{z} \xrightarrow{\int} z$$
 (11)

This chain can be cast into the following linear system:

$$\dot{\mathbf{z}}(t) = \underbrace{\begin{pmatrix} 0 & 1 & 0 & \cdots & \\ 0 & 0 & 1 & & \\ \vdots & \vdots & & \vdots & \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}}_{\mathbf{A}} \mathbf{z}(t) + \underbrace{\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ \end{pmatrix}}_{\mathbf{B}} w(t), \qquad (12)$$

where $w(\cdot)$ is known to be inside a tube $[w](\cdot)$.

Considering for instance the chain:

$$w \xrightarrow{\int} z_2 \xrightarrow{\int} z_1$$

and prior 2d sets $\check{\mathbb{Z}}(\cdot)$ implemented as tubes $[z_1] \times [z_2](\cdot)$ (upper part of the figure)

Considering for instance the chain:

$$w \xrightarrow{\int} z_2 \xrightarrow{\int} z_1$$

and prior 2d sets $\check{\mathbb{Z}}(\cdot)$ implemented as tubes $[z_1] \times [z_2](\cdot)$ (upper part of the figure)

Considering for instance the chain:

 $w \xrightarrow{\int} z_2 \xrightarrow{\int} z_1$

and prior 2d sets $\check{\mathbb{Z}}(\cdot)$ implemented as tubes $[z_1] \times [z_2](\cdot)$ (upper part of the figure)

Considering for instance the chain:

 $w \xrightarrow{\int} z_2 \xrightarrow{\int} z_1$

and prior 2d sets $\check{\mathbb{Z}}(\cdot)$ implemented as tubes $[z_1] \times [z_2](\cdot)$ (upper part of the figure)

State observations are processed as restrictions from the tubes.

Considering for instance the chain:

 $w \xrightarrow{\int} z_2 \xrightarrow{\int} z_1$

and prior 2d sets $\check{\mathbb{Z}}(\cdot)$ implemented as tubes $[z_1] \times [z_2](\cdot)$ (upper part of the figure)

 $\begin{array}{l} \text{One computation step of } \mathcal{C}_{\int\!\!\int}([z1](\cdot),[z2](\cdot),[w](\cdot)\\ \text{(result is the blue hatched part)}. \end{array}$

State observations are processed as restrictions from the tubes.

The integrator chain contractor C_{ff} Linear state estimator

> Minimal outputs can be obtained, as restrictions always correspond to the intersection of a polygon and a box, which can be computed accurately.

Minimal outputs can be obtained, as restrictions always correspond to the intersection of a polygon and a box, which can be computed accurately.

 C_{linobs} : an optimal contractor for systems $\dot{\mathbf{z}}(t) = \mathbf{A}\mathbf{z}(t) + \mathbf{B}\mathbf{w}(t)$.

Exact bounded-error continuous-time linear state estimator S. Rohou, L. Jaulin, *Systems & Control Letters*, 2021

Minimal outputs can be obtained, as restrictions always correspond to the intersection of a polygon and a box, which can be computed accurately.

 C_{linobs} : an optimal contractor for systems $\dot{\mathbf{z}}(t) = \mathbf{A}\mathbf{z}(t) + \mathbf{B}\mathbf{w}(t)$.

Exact bounded-error continuous-time linear state estimator S. Rohou, L. Jaulin, *Systems & Control Letters*, 2021

An ellipsoidal predictor-corrector state estimation scheme for linear continuous-time systems with bounded parameters and bounded measurement errors

A. Rauh, S. Rohou, L. Jaulin, Frontiers In Control Engineering, 2022

Section 4

Back to the localization problem

Back to the localization problem Contractor network

Mobile robotic state equations:

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)), \tag{13a}$$

$$y_i = g(\mathbf{x}(t_i)), \tag{13b}$$

Corresponding list of contractors, resulting from the Brunovsky decomposition:

$$- C_{\lambda}([\mathbf{x}], [\mathbf{u}], [\mathbf{z}], [\dot{\mathbf{z}}], [\ddot{\mathbf{z}}]) \\
- C_{\int \int}([z_1](\cdot), [\dot{z}_1](\cdot), [\ddot{z}_1](\cdot)) \\
- C_{\int \int}([z_2](\cdot), [\dot{z}_2](\cdot), [\ddot{z}_2](\cdot)) \\
- C_g([\mathbf{x}](t_i), [y_i])$$

Back to the localization problem Reproducible example

Unknown states:

$$\mathbf{x}(t) = \begin{pmatrix} 10\cos(t) \\ 5\sin(2t) \\ \tan^2(10\cos(2t), -10\sin(t)) \\ \sqrt{(-10\sin(t))^2 + (10\cos(2t))^2} \end{pmatrix}$$
(14)

Known inputs:

$$\mathbf{u}(t) = \begin{pmatrix} \frac{2\sin(t)\sin(2t) + \cos(t)\cos(2t)}{\sin^2(t) + \cos^2(2t)} \\ \frac{10\cos(t) \cdot \sin(t) - 20\cos(2t) \cdot \sin(2t)}{\sqrt{\sin^2(t) + \cos^2(2t)}} \end{pmatrix}$$
(15)

Observation equation:

$$y^{j}(t_{i}) = \sqrt{\left(x_{1}(t_{i}) - m_{1}^{j}\right)^{2} + \left(x_{2}(t_{i}) - m_{2}^{j}\right)^{2}}$$
(16)

Rohou, Jaulin

Back to the localization problem Reproducible example

Two known landmarks: $\mathbf{m}^a = (-5, 6)$ and $\mathbf{m}^b = (0, -4)$

t_i	$[y^a](t_i)$	t_i	$[y^b](t_i)$
0.75	[12.333,12.383]	1.50	[4.733,4.783]
2.25	[10.938,10.988]	3.00	[10.211,10.261]

Table: Set of four bounded measurements $(t_i, [y](t_i))$.

The simulation is run for $t \in [0,3]$.

Back to the localization problem Results

Set $[\mathbf{x}](\cdot)$ of feasible states projected in two dimensions. The unknown planar trajectory remains enclosed in the tube.

The simulation runs in 36 seconds.

Back to the localization problem Results

The tube $[x_3](\cdot)$ of feasible headings. The actual but unknown truth is plotted in white and guaranteed to be enclosed in the computed $[x_3](\cdot)$.

The simulation runs in 36 seconds.

Rohou, Jaulin

Section 5

Conclusion

Conclusion

Interval Brunovsky decomposition for non-linear systems

The problem is difficult due to:

- non-linearities in ${\bf f},\,g$
- uncertainties on $\mathbf{u}(\cdot)$, y_i , t_i , \ldots
- no initial condition on $\mathbf{x} \Longrightarrow$ no linearization point

Conclusion

Interval Brunovsky decomposition for non-linear systems

The problem is difficult due to:

- non-linearities in ${\bf f},\ g$
- uncertainties on $\mathbf{u}(\cdot)$, y_i , t_i , \ldots
- no initial condition on $\mathbf{x} \Longrightarrow$ no linearization point

Easily dealt with a **Brunovsky approach coupled with interval methods**, if the system is flat:

- 1. symbolic decomposition: the differential part is separated from the non-linear equations
- 2. an interval method is applied, with an optimal operator for the differential part expressed as a linear system

Conclusion

Brunovsky decomposition for dynamic interval localization
 S. Rohou, L. Jaulin, *IEEE Transactions on Automatic Control*, 2023

Code available in the Codac library: Interval tools for constraint programming over reals, trajectories and sets. http://codac.io