Brunovsky decomposition for dynamic interval localization

Simon Rohou, Luc Jaulin

ENSTA Bretagne, Lab-STICC, UMR CNRS 6285, Brest, France

AID / FARO $18^{
m th}$ April 2023

Rohou, Jaulin 18/04/2023 1 / 28

Section 1

Introduction

Rohou, Jaulin 18/04/2023 2 / 28

Previously in FARO...

Considering the linear time-invariant dynamical system

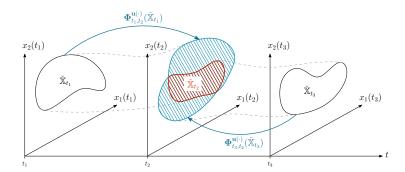
$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}.\tag{1}$$

Rohou, Jaulin 18/04/2023 3 / 28

Previously in FARO...

Considering the linear time-invariant dynamical system

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}.\tag{1}$$



Rohou, Jaulin 18/04/2023 3 / 28

Towards non-linear systems

Considering now:

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)),$$
 (2a)

$$y_i = g(\mathbf{x}(t_i)), \tag{2b}$$

- no prior knowledge about the states $\mathbf{x}(t) \in \mathbb{R}^n$
- but a discrete set of non-linear state observations $y_i \in \mathbb{R}$

Rohou, Jaulin 18/04/2023 4 / 28

Towards non-linear systems

Considering now:

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)),$$
 (2a)

$$y_i = g(\mathbf{x}(t_i)), \tag{2b}$$

- no prior knowledge about the states $\mathbf{x}(t) \in \mathbb{R}^n$
- but a discrete set of non-linear state observations $y_i \in \mathbb{R}$

The problem is difficult:

- non-linearities in f, g
- uncertainties on $\mathbf{u}(\cdot)$, y_i , t_i , ...
- no initial condition ⇒ no linearization point

Rohou, Jaulin 18/04/2023 4 / 28

Towards non-linear systems

Considering now:

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)),$$
 (2a)

$$y_i = g(\mathbf{x}(t_i)), \tag{2b}$$

- no prior knowledge about the states $\mathbf{x}(t) \in \mathbb{R}^n$
- but a discrete set of non-linear state observations $y_i \in \mathbb{R}$

The problem is difficult:

- non-linearities in f, g
- uncertainties on $\mathbf{u}(\cdot)$, y_i , t_i , ...
- no initial condition ⇒ no linearization point

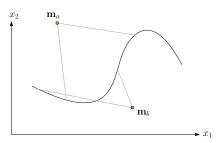
⇒ usually easily dealt with interval methods, but not in any cases

Rohou, Jaulin 18/04/2023 4 / 28

Test case: full robotic state estimation

Landmarks-based localization of a mobile robot:

- $-\mathbf{x} \in \mathbb{R}^4$
 - x_1 , x_2 : position
 - x_3 : heading
 - $-x_4$: speed
- discrete set of range-only measurements
 - $-y_i \in \mathbb{R}$
 - measurements from known landmarks \mathbf{m}_a , \mathbf{m}_b



Rohou, Jaulin 18/04/2023 5 / 28

Evolution equation f (for a wheeled robot)

Let us consider the system described by the following equations:

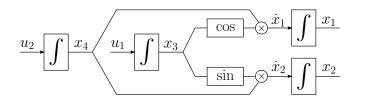
$$\begin{cases} \dot{x}_1 = x_4 \cos(x_3) \\ \dot{x}_2 = x_4 \sin(x_3) \\ \dot{x}_3 = u_1 \\ \dot{x}_4 = u_2 \end{cases}$$
 (3)

Rohou, Jaulin 18/04/2023 6 / 28

Evolution equation f (for a wheeled robot)

Let us consider the system described by the following equations:

$$\begin{cases} \dot{x}_1 = x_4 \cos(x_3) \\ \dot{x}_2 = x_4 \sin(x_3) \\ \dot{x}_3 = u_1 \\ \dot{x}_4 = u_2 \end{cases}$$
 (3)

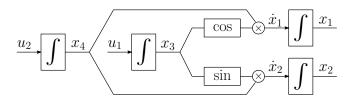


Rohou, Jaulin 18/04/2023 6 / 28

Evolution equation f (for a wheeled robot)

Let us consider the system described by the following equations:

$$\begin{cases} \dot{x}_1 = x_4 \cos(x_3) \\ \dot{x}_2 = x_4 \sin(x_3) \\ \dot{x}_3 = u_1 \\ \dot{x}_4 = u_2 \end{cases}$$
 (3)

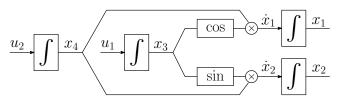


The problem is difficult when x_3 is unknown. Information only comes from x_1 , x_2 , \mathbf{u} .

Rohou, Jaulin 18/04/2023 6 / 28

Evolution equation **f** (for a wheeled robot)

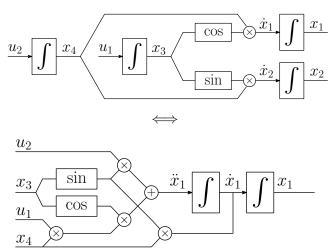
Overview of the «Brunovsky» approach:



Rohou, Jaulin 18/04/2023 7 / 28

Evolution equation **f** (for a wheeled robot)

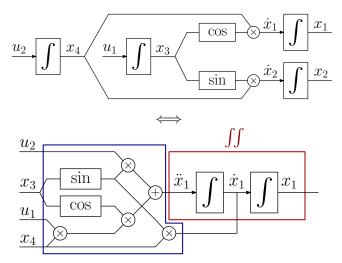
Overview of the «Brunovsky» approach:



18/04/2023 7 / 28

Evolution equation f (for a wheeled robot)

Overview of the «Brunovsky» approach:



Rohou, Jaulin 18/04/2023 7 / 28

Section 2

Brunovsky decomposition

Rohou, Jaulin 18/04/2023 8 / 28

Flat systems

We consider the following system:

$$\begin{cases} \dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}) \\ \mathbf{z} = \mathbf{h}(\mathbf{x}), \end{cases} \tag{4}$$

with $\mathbf{z} \in \mathbb{R}^m$: output vector used with a control point of view, and both \mathbf{f} and \mathbf{h} assumed to be smooth.

 $\mathbf{u} \in \mathbb{R}^m$ and $\mathbf{z} \in \mathbb{R}^m$.

The system is said to be flat if there exists two continuous functions ϕ and ψ and integers $\kappa_1, \ldots, \kappa_m$ such that

$$\begin{cases}
\mathbf{x} = \phi \left(z_1, \dot{z}_1, \dots, z_1^{(\kappa_1 - 1)}, \dots, z_m, \dot{z}_m, \dots, z_m^{(\kappa_m - 1)} \right) \\
\mathbf{u} = \psi \left(z_1, \dot{z}_1, \dots, z_1^{(\kappa_1)}, \dots, z_m, \dot{z}_m, \dots, z_m^{(\kappa_m)} \right).
\end{cases} (5)$$

Rohou, Jaulin 18/04/2023 9 / 28

Flat systems

Usually, functions ϕ and ψ are obtained in two steps:

1. The derivation step, that computes symbolically $z_1, \dot{z}_1, \ldots, z_1^{(\kappa_1)}, \ldots, z_m, \dot{z}_m, \ldots, z_m^{(\kappa_m)}$ as functions of \mathbf{x} and \mathbf{u} , using Eq. (4). We obtain an expression of the form

$$\begin{pmatrix} z_1 \\ \dot{z}_1 \\ \vdots \\ z_m^{(\kappa_m)} \end{pmatrix} = \lambda \begin{pmatrix} \mathbf{x} \\ \mathbf{u} \end{pmatrix}. \tag{6}$$

2. The inversion step in order to obtain ϕ and ψ

Rohou, Jaulin 18/04/2023 10 / 28

Flat systems: example

Consider the system

$$\begin{cases} \dot{x}_1 = x_1 + x_2 \\ \dot{x}_2 = x_2^2 + u \\ z = x_1. \end{cases}$$
 (7)

Rohou, Jaulin 18/04/2023 11 / 28

Flat systems: example

Consider the system

$$\begin{cases} \dot{x}_1 = x_1 + x_2 \\ \dot{x}_2 = x_2^2 + u \\ z = x_1. \end{cases}$$
 (7)

For the derivation step, we compute $z, \dot{z}, \ddot{z}, \ldots$ with respect to ${\bf x}$ and u until u occurs. We get

$$\begin{cases} z = x_1 \\ \dot{z} = \dot{x}_1 = x_1 + x_2 \\ \ddot{z} = \dot{x}_1 + \dot{x}_2 = x_1 + x_2 + x_2^2 + u. \end{cases}$$
 (8)

Rohou, Jaulin 18/04/2023 11 / 28

Flat systems: example

Consider the system

$$\begin{cases} \dot{x}_1 = x_1 + x_2 \\ \dot{x}_2 = x_2^2 + u \\ z = x_1. \end{cases}$$
 (7)

For the derivation step, we compute $z, \dot{z}, \ddot{z}, \ldots$ with respect to ${\bf x}$ and u until u occurs. We get

$$\begin{cases} z = x_1 \\ \dot{z} = \dot{x}_1 = x_1 + x_2 \\ \ddot{z} = \dot{x}_1 + \dot{x}_2 = x_1 + x_2 + x_2^2 + u. \end{cases}$$
(8)

Since we had to derive twice, we conclude that the Kronecker index is $\kappa=2$ which corresponds to the dimension of $\mathbf{x}=(x_1,x_2)^{\mathsf{T}}$. As a consequence, the output z is flat.

Rohou, Jaulin 18/04/2023 11 / 28

Flat systems: Brunovsky decomposition

The differential flat system:

- $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t))$
- with flat outputs z_1,\dots,z_m
- and sensor outputs ${f y}$

Rohou, Jaulin 18/04/2023 12 / 28

Flat systems: Brunovsky decomposition

The differential flat system:

- $-\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t))$
- with flat outputs z_1,\ldots,z_m
- and sensor outputs ${f y}$

admits the following Brunovsky decomposition:

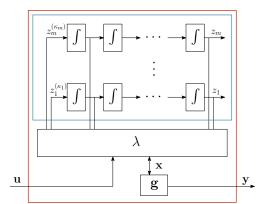
$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)) \\
\mathbf{z} = \mathbf{h}(\mathbf{x}) \\
\mathbf{y} = \mathbf{g}(\mathbf{x})$$

$$\Leftrightarrow \begin{cases}
\begin{pmatrix}
z_{1} \\
\dot{z}_{1} \\
\vdots \\
z_{m}^{(\kappa_{m})}
\end{pmatrix} = \lambda \begin{pmatrix} \mathbf{x} \\
\mathbf{u}
\end{pmatrix} \\
z_{1}^{(\kappa_{m})} \xrightarrow{\int} \cdots \xrightarrow{\int} \dot{z}_{1} \xrightarrow{\int} z_{1} \\
\vdots \\
z_{m}^{(\kappa_{m})} \xrightarrow{\int} \cdots \xrightarrow{\int} \dot{z}_{m} \xrightarrow{\int} z_{m} \\
\mathbf{y} = \mathbf{g}(\mathbf{x})
\end{cases} (9)$$

Rohou, Jaulin 18/04/2023 12 / 28

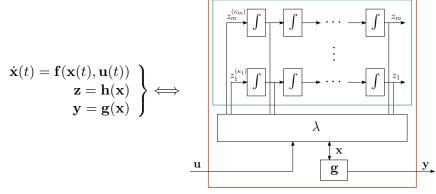
System rewriting

$$\left. egin{aligned} \dot{\mathbf{x}}(t) &= \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)) \\ \mathbf{z} &= \mathbf{h}(\mathbf{x}) \\ \mathbf{y} &= \mathbf{g}(\mathbf{x}) \end{aligned} \right\} \Longleftrightarrow$$



Rohou, Jaulin 18/04/2023 13 / 28

System rewriting

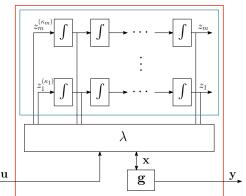


Introducing so-called Chains of integrators

Rohou, Jaulin 18/04/2023 13 / 28

System rewriting

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t))$$
 $\mathbf{z} = \mathbf{h}(\mathbf{x})$
 $\mathbf{y} = \mathbf{g}(\mathbf{x})$
 \mathbf{u}



- Introducing so-called *Chains of integrators*
- Integrator operations \int are separated from non-linear relations in λ , \mathbf{g}

Rohou, Jaulin 18/04/2023 13 / 28

Decomposition of the evolution function $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u})$:

Rohou, Jaulin 18/04/2023 14 / 28

Decomposition of the evolution function $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u})$:

$$(i) \quad \dot{x}_{1} = x_{4} \cos(x_{3}) \\ (ii) \quad \dot{x}_{2} = x_{4} \sin(x_{3}) \\ (iii) \quad \dot{x}_{3} = u_{1} \\ (iv) \quad \dot{x}_{4} = u_{2}$$

$$(I) \quad \begin{cases} \begin{pmatrix} z_{1} \\ z_{2} \\ \dot{z}_{1} \\ \dot{z}_{2} \\ \ddot{z}_{1} \\ \ddot{z}_{2} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{2} \\ x_{4} \cos(x_{3}) \\ x_{4} \sin(x_{3}) \\ u_{2} \cos(x_{3}) - u_{1}x_{4} \sin(x_{3}) \\ u_{2} \sin(x_{3}) + u_{1}x_{4} \cos(x_{3}) \end{pmatrix}$$

$$(II) \quad \begin{cases} \ddot{z}_{1} \stackrel{f}{\rightarrow} \dot{z}_{1} \stackrel{f}{\rightarrow} z_{1} \\ \ddot{z}_{2} \stackrel{f}{\rightarrow} \dot{z}_{2} \stackrel{f}{\rightarrow} z_{2} \end{cases}$$

- Block (I) is only made of non-linear static equations
- Block (II) is made of pure chains of integrators

Rohou, Jaulin 18/04/2023 14 / 28

$$\begin{cases} \begin{pmatrix} z_1 \\ z_2 \\ \dot{z}_1 \\ \dot{z}_2 \\ \ddot{z}_1 \\ \dot{z}_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_4 \cos(x_3) \\ x_2 \sin(x_3) \\ u_2 \cos(x_3) - u_1 x_4 \sin(x_3) \\ u_2 \sin(x_3) + u_1 x_4 \cos(x_3) \end{pmatrix}$$

$$\begin{cases} \ddot{z}_1 \stackrel{f}{\rightarrow} \dot{z}_1 \stackrel{f}{\rightarrow} z_1 \\ \ddot{z}_2 \stackrel{f}{\rightarrow} \dot{z}_2 \stackrel{f}{\rightarrow} z_2 \end{cases}$$

$$\begin{bmatrix} \mathbf{x} \\ \dot{z}_1 \\ \ddot{z}_2 \stackrel{f}{\rightarrow} \dot{z}_2 \stackrel{f}{\rightarrow} z_2 \end{cases}$$

$$\begin{bmatrix} \mathbf{z} \\ \dot{z}_1 \\ \ddot{z}_2 \stackrel{f}{\rightarrow} \dot{z}_2 \stackrel{f}{\rightarrow} z_2 \end{cases}$$

$$\begin{bmatrix} \mathbf{z} \\ \dot{z}_1 \\ \dot{z}_2 \stackrel{f}{\rightarrow} \dot{z}_2 \stackrel{f}{\rightarrow} z_2 \end{cases}$$

$$\begin{bmatrix} \mathbf{z} \\ \dot{z}_1 \\ \dot{z}_2 \\ \vdots \\ \dot{z}_2 \stackrel{f}{\rightarrow} \dot{z}_2 \stackrel{f}{\rightarrow} z_2 \end{cases}$$

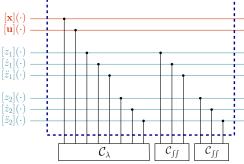
Rohou, Jaulin 18/04/2023 15 / 28

 C_{λ}

$$\left\{ \begin{pmatrix} z_1 \\ z_2 \\ \dot{z}_1 \\ \dot{z}_2 \\ \dot{z}_1 \\ \dot{z}_2 \\ \dot{z}_1 \\ \dot{z}_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_4 \cos(x_3) \\ x_4 \sin(x_3) \\ u_2 \cos(x_3) - u_1 x_4 \sin(x_3) \\ u_2 \sin(x_3) + u_1 x_4 \cos(x_3) \\ \lambda(\mathbf{x}, \mathbf{u}) \end{pmatrix} \right.$$

$$\left\{ \begin{array}{ccc} \ddot{z}_1 \stackrel{\int}{\rightarrow} \dot{z}_1 \stackrel{\int}{\rightarrow} z_1 \\ \ddot{z}_2 \stackrel{\int}{\rightarrow} \dot{z}_2 \stackrel{\int}{\rightarrow} z_2 \end{array} \right.$$

- $\mathcal{C}_{\lambda}([\mathbf{x}], [\mathbf{u}], [\mathbf{z}], [\dot{\mathbf{z}}], [\ddot{\mathbf{z}}])$
- $\mathcal{C}_{ff}([z_1](\cdot),[\dot{z_1}](\cdot),[\ddot{z_1}](\cdot))$
- $\mathcal{C}_{ff}([z_2](\cdot), [\dot{z_2}](\cdot), [\ddot{z_2}](\cdot))$



Rohou, Jaulin 18/04/2023 15 / 28

Section 3

The integrator chain contractor $\mathcal{C}_{\int\!\!\!\int}$

Rohou, Jaulin 18/04/2023 16 / 28

The integrator chain contractor $\mathcal{C}_{\int\!\!\int}$

Definition

A dedicated integrator chain contractor, denoted by $\mathcal{C}_{\int\!\!\!\int}$, has to be provided for:

$$z^{(\kappa)} \xrightarrow{\int} \cdots \xrightarrow{\int} \dot{z} \xrightarrow{\int} z \tag{10}$$

 \longrightarrow it allows to accurately propagate information from one signal through its primitives and derivatives.

Rohou, Jaulin 18/04/2023 17 / 28

The integrator chain contractor $\mathcal{C}_{\int\!\!\!\int}$

Definition

A dedicated integrator chain contractor, denoted by $\mathcal{C}_{\int\!\!\int}$, has to be provided for:

$$z^{(\kappa)} \xrightarrow{\int} \cdots \xrightarrow{\int} \dot{z} \xrightarrow{\int} z \tag{10}$$

 \longrightarrow it allows to accurately propagate information from one signal through its primitives and derivatives.

What about a decomposition?

$$z^{(\kappa)} \xrightarrow{\int} z^{(\kappa-1)}, \ldots, \ddot{z} \xrightarrow{\int} \dot{z}, \ldots, \dot{z} \xrightarrow{\int} z.$$
 (11)

Rohou, Jaulin 18/04/2023 17 / 28

The integrator chain contractor $\mathcal{C}_{\int\!\!\int}$

Definition

A dedicated integrator chain contractor, denoted by $\mathcal{C}_{\int\!\!\int}$, has to be provided for:

$$z^{(\kappa)} \xrightarrow{\int} \cdots \xrightarrow{\int} \dot{z} \xrightarrow{\int} z \tag{10}$$

 \longrightarrow it allows to accurately propagate information from one signal through its primitives and derivatives.

What about a decomposition?

$$z^{(\kappa)} \xrightarrow{\int} z^{(\kappa-1)}, \ldots, \ddot{z} \xrightarrow{\int} \dot{z}, \ldots, \dot{z} \xrightarrow{\int} z.$$
 (11)

Strong wrapping effect

Rohou, Jaulin 18/04/2023 17 / 28

The integrator chain contractor $\mathcal{C}_{\int\!\!\!\int}$

Linear state estimator

The integrator chain constraint involving the signals $(z^{(0)},z^{(1)},\dots,z^{(\kappa)},w)$ and defined as:

$$w \xrightarrow{\int} z^{(\kappa)} \xrightarrow{\int} \cdots \xrightarrow{\int} \dot{z} \xrightarrow{\int} z$$
 (12)

can be cast into the following linear system:

$$\dot{\mathbf{z}}(t) = \underbrace{\begin{pmatrix} 0 & 1 & 0 & \cdots \\ 0 & 0 & 1 & & \\ \vdots & \vdots & & & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}}_{\mathbf{Z}(t)} \mathbf{z}(t) + \underbrace{\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}}_{\mathbf{R}} w(t), \qquad (13)$$

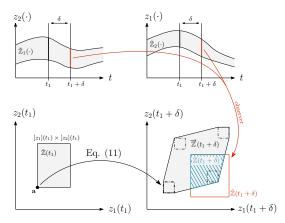
where $w(\cdot)$ is known to be inside a tube $[w](\cdot)$.

Rohou, Jaulin 18/04/2023 18 / 28

Linear state estimator

Considering for instance the chain:

$$w \xrightarrow{\int} z_2 \xrightarrow{\int} z_1$$
 and prior 2d sets $\check{\mathbb{Z}}(\cdot)$ implemented as tubes $[z_1] \times [z_2](\cdot)$ (upper part of the figure).



One computation step of $\mathcal{C}_{\int\int}([z1](\cdot),[z2](\cdot),[w](\cdot)$ (result is the blue hatched part).

State observations are processed as restrictions from the tubes.

Rohou, Jaulin 18/04/2023 19 / 28

The integrator chain contractor $\mathcal{C}_{\int\!\!\!\int}$

Linear state estimator

$$\mathcal{C}_{\mathrm{linobs}}$$
: a contractor for systems $\dot{\mathbf{z}}(t) = \mathbf{A}\mathbf{z}(t) + \mathbf{B}\mathbf{w}(t)$.

Exact outputs, as restrictions always correspond to the intersection of a polygon and a box, which can be computed accurately.

■ Exact bounded-error continuous-time linear state estimator

S. Rohou, L. Jaulin, Systems & Control Letters, 2021

Rohou, Jaulin 18/04/2023 20 / 28

The integrator chain contractor $\mathcal{C}_{\int\!\!\!\int}$

Linear state estimator

$$\mathcal{C}_{\mathrm{linobs}}$$
: a contractor for systems $\dot{\mathbf{z}}(t) = \mathbf{A}\mathbf{z}(t) + \mathbf{B}\mathbf{w}(t)$.

Exact outputs, as restrictions always correspond to the intersection of a polygon and a box, which can be computed accurately.

- Exact bounded-error continuous-time linear state estimator
- S. Rohou, L. Jaulin, Systems & Control Letters, 2021
- An ellipsoidal predictor-corrector state estimation scheme for linear continuous-time systems with bounded parameters and bounded measurement errors
- A. Rauh, S. Rohou, L. Jaulin, Frontiers In Control Engineering, 2022

Rohou, Jaulin 18/04/2023 20 / 28

Section 4

Back to the localization problem

Rohou, Jaulin 18/04/2023 21 / 28

Contractor network

Mobile robotic state equations:

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)), \tag{14a}$$

$$y_i = g(\mathbf{x}(t_i)), \tag{14b}$$

Corresponding list of contractors, resulting from the Brunovsky decomposition:

- $\mathcal{C}_{\lambda}([\mathbf{x}], [\mathbf{u}], [\mathbf{z}], [\dot{\mathbf{z}}], [\ddot{\mathbf{z}}])$
- $\mathcal{C}_{ff}([z_1](\cdot), [\dot{z_1}](\cdot), [\ddot{z_1}](\cdot))$
- $\mathcal{C}_{ff}([z_2](\cdot), [\dot{z_2}](\cdot), [\ddot{z_2}](\cdot))$
- $C_g([\mathbf{x}](t_i), [y_i])$

Rohou, Jaulin 18/04/2023 22 / 28

Reproducible example

Unknown states:

$$\mathbf{x}(t) = \begin{pmatrix} 10\cos(t) \\ 5\sin(2t) \\ \tan 2(10\cos(2t), -10\sin(t)) \\ \sqrt{(-10\sin(t))^2 + (10\cos(2t))^2} \end{pmatrix}$$
 (15)

Known inputs:

$$\mathbf{u}(t) = \begin{pmatrix} \frac{2\sin(t)\sin(2t) + \cos(t)\cos(2t)}{\sin^2(t) + \cos^2(2t)} \\ \frac{10\cos(t) \cdot \sin(t) - 20\cos(2t) \cdot \sin(2t)}{\sqrt{\sin^2(t) + \cos^2(2t)}} \end{pmatrix}$$
(16)

Observation equation:

$$y^{j}(t_{i}) = \sqrt{\left(x_{1}(t_{i}) - m_{1}^{j}\right)^{2} + \left(x_{2}(t_{i}) - m_{2}^{j}\right)^{2}}$$
(17)

Rohou, Jaulin 18/04/2023 23 / 28

Reproducible example

Two known landmarks: $\mathbf{m}^a = (-5,6)$ and $\mathbf{m}^b = (0,-4)$

t_i	$[y^a](t_i)$
0.75	[12.333,12.383]
2.25	[10.938,10.988]

t_i	$[y^b](t_i)$
1.50	[4.733,4.783]
3.00	[10.211,10.261]

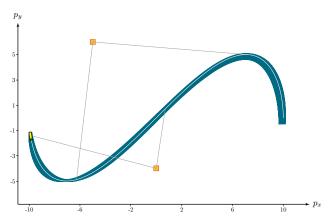
Table: Set of four bounded measurements $(t_i, [y](t_i))$.

The simulation is run for $t \in [0,3]$.

Rohou, Jaulin 18/04/2023 24 / 28

Back to the localization problem

Results

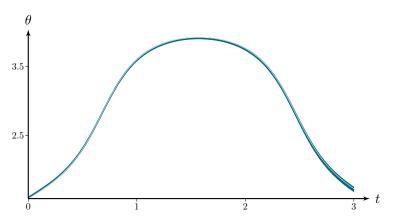


Set $[\mathbf{x}](\cdot)$ of feasible states projected in two dimensions. The unknown planar trajectory remains enclosed in the tube.

The simulation runs in 36 second.

Rohou, Jaulin 18/04/2023 25 / 28

Results



The tube $[x_3](\cdot)$ of feasible headings. The actual but unknown truth is plotted in white and guaranteed to be enclosed in the computed $[x_3](\cdot)$.

The simulation runs in 36 second.

Rohou, Jaulin 18/04/2023 25 / 28

Section 5

Conclusion

Rohou, Jaulin 18/04/2023 26 / 28

Conclusion

Interval Brunovsky decomposition for non-linear systems

Considering:

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)), \tag{18a}$$

$$y_i = q(\mathbf{x}(t_i)), \tag{18b}$$

- no prior knowledge about the states $\mathbf{x}(t) \in \mathbb{R}^n$
- but a discrete set of non-linear state observations $y_i \in \mathbb{R}$

The problem is difficult:

- non-linearities in f, g
- uncertainties on $\mathbf{u}(\cdot)$, y_i , t_i , ...
- no initial condition ⇒ no linearization point

 \Rightarrow usually easily dealt with a Brunovsky decomposition with interval methods, if the system is flat

Rohou, Jaulin 18/04/2023 27 / 28

Conclusion

- Brunovsky decomposition for dynamic interval localization
- S. Rohou, L. Jaulin, IEEE Transactions on Automatic Control, 2023

Questions?

Rohou, Jaulin 18/04/2023 28 / 28