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Section 2

Motivations
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Simultaneous Localization and Mapping
Motivations

I come back to a previous pose and recognize the environment
I problem: loop closure detection

seamark

Localization of the
seamark by the robot

Localization of the robot
based on the previous

estimation of the seamark
p(t1)

p0
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Verifying loops in robot trajectories under uncertainties

Simultaneous Localization and Mapping
Motivations

The problem of false loop detections in similar environments.

In Versailles’ gardens: similar places. Did we really come back to a previous place?
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Verifying loops in robot trajectories under uncertainties

Underwater robot localization
Motivations

An underwater robot performing a loop during an exploration:

Robot’s trajectory is projected in blue on the seabed.
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Verifying loops in robot trajectories under uncertainties

Uncertainties: detection vs verification
Motivations

Uncertain trajectories enclosed by tubes.

p1

p2

Detectable
loop

Detectable and
verifiable loop

Only one loop can be verified – at least two feasible loops are detected
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Section 3

Looped trajectories
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Verifying loops in robot trajectories under uncertainties

Definitions (Aubry, 2013)
Looped trajectories

I robot position: p = (x, y)ᵀ ∈ R2

I 2D robot trajectory: p(t) : R→ R2, t ∈ [t0, tf ]

I looped trajectory ⇔ trajectory that crosses itself
I p(t1) = p(t2), t1 6= t2
I 1 loop ⇔ 1 t-pair (t1, t2)
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Verifying loops in robot trajectories under uncertainties

Definitions (Aubry, 2013)
Looped trajectories

I t-plane ⇔ all feasible t-pairs = [t0, tf ]2

I loop set T∗:
I T∗ =

{
(t1, t2) ∈ [t0, tf ]2 | p(t1) = p(t2), t1 < t2

}
I loop set of below example:

I T∗ = {(ta, tb), (tc, tf ), (td, te)}
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Verifying loops in robot trajectories under uncertainties

Computing loops from robot sensors
Looped trajectories

Context: robot trajectory p(t) cannot be directly sensed.
Computation from speed measurements:

p(t) =

∫ t

t0

v(τ)dτ + p0, (1)

with v(t) ∈ R2: robot velocity vector at time t ∈ [t0, tf ].

Loop-set from velocity:

T∗ =
{

(t1, t2) ∈ [t0, tf ]2 | p(t1) = p(t2), t1 < t2
}

(2)

=

{
(t1, t2) ∈ [t0, tf ]2 |

∫ t2

t1

v(τ)dτ = 0, t1 < t2

}
(3)
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Verifying loops in robot trajectories under uncertainties

Section 4

Loop detection
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Verifying loops in robot trajectories under uncertainties

Bounded-error context
Loop detection

Tubes: sets of trajectories

[x](·), interval of trajectories [x−(·), x+(·)]
[x](·), such that ∀t ∈ R, x−(t) 6 x+(t)

t

[x]

t0

tf

[x]([t1])

[t1]

[x](t2)

t2

x
∗ (·
)

x+(·)

x−(·)

Tube [x](·) enclosing an uncertain trajectory x∗(·)

Simon Rohou SWIM 2019 (Palaiseau) 12 / 31



Verifying loops in robot trajectories under uncertainties

Bounded-error context
Loop detection

Actual loop-set T∗ (error free):

T∗ =

{
(t1, t2) |

∫ t2

t1

v∗(τ)dτ = 0

}
(4)

Bounded-error context, assuming v∗(·) ∈ [v](·):

T =

{
(t1, t2) | ∃v(·) ∈ [v](·) ,

∫ t2

t1

v(τ)dτ = 0

}
(5)

Set-membership approach:

T∗ ⊂ T ⊂ [t0, tf ]2 (6)
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Verifying loops in robot trajectories under uncertainties

Inclusion function
Loop detection

Simplification:
defining the actual but unknown function f∗ : R2 → R2

f∗(t1, t2) =

∫ t2

t1

v∗(τ)dτ (7)

Assessed knowledge:
[f ] : R2 → IR2 is an interval function of f∗:

f∗(t1, t2) ∈ [f ](t1, t2) =

∫ t2

t1

[v](τ)dτ (8)
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Verifying loops in robot trajectories under uncertainties

Integral of tubes
Loop detection

Definition: the integral of a tube [x](·) = [x−, x+] is an interval:

∫ b

a

[x](τ)dτ =

{∫ b

a

x(τ)dτ | x(·) ∈ [x](·)

}
=

[∫ b

a

x−(τ)dτ,

∫ b

a

x+(τ)dτ

]
[Aubry2013]

t

[x]

b
a

∫ b

a

x−(τ)dτx−(t)

blue area: lower bound of the tube’s integral
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]
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t

[x]

a
b

x+(t)

∫ b

a

x+(τ)dτ

orange area: upper bound of the tube’s integral
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Verifying loops in robot trajectories under uncertainties

Reliable approximation of a loop set
Loop detection

p2

p1

t2

t1

Undeniable looped trajectory

∀f ∈ [f ],∃t ∈ Ti | f(t) = 0 =⇒ ∃t ∈ Ti | f∗(t) = 0︸ ︷︷ ︸
loop existence proof

(9)
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Verifying loops in robot trajectories under uncertainties

Section 5

Topological degree for zero verification
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Verifying loops in robot trajectories under uncertainties

Problem statement
Topological degree for zero verification

Usually we cannot find exactly a zero of an uncertain function, but
we can prove it exists within some domain Ω.

Simon Rohou SWIM 2019 (Palaiseau) 18 / 31

Assumptions:
I known inclusion function [f ] : IRn → IRm of the unknown

function f∗ : Rn → Rm

I possibly in the form of an algorithm for computing [f ]([t])

I n = m = 2

I Ω possibly made of a union of finitely many boxes in IR2

−→ need to isolate and verify zeros of f∗



Verifying loops in robot trajectories under uncertainties

Powerful topological degree
Topological degree for zero verification

Topological degree deg(f∗,Ω):
I unique integer assigned to f∗ and a compact set Ω ⊂ Rn such

that f∗(t) 6= 0 for all t ∈ ∂Ω

Most important property of it:

deg(f∗,Ω) 6= 0 =⇒ ∃t ∈ Ω | f∗(t) = 0 (10)

� Topological degree theory and applications
Y. J. Cho, Y. Q. Chen Mathematical Analysis and Applications, 2006

� Degree theory in analysis and applications
I. Fonseca, W. Gangbo Oxford lecture series, 1995

� A set of axioms for the degree of a tangent vector field on differentiable manifolds
M. Furi, M. P. Pera, M. Spadini Fixed Point Theory and Applications, 2010
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Verifying loops in robot trajectories under uncertainties

Powerful topological degree
Topological degree for zero verification

Assets of topological degree:

I can be computed in case where only an inclusion function [f ]
of f∗ is given
� Effective topological degree computation based on interval arithmetic
P. Franek, S. Ratschan CoRR, 2012

I is in many cases more powerful than more classical verification
tools including interval Newton, Miranda’s or Borsuk’s tests
� Quasi-decidability of a fragment of the first-order theory of real numbers
P. Franek, S. Ratschan, P. Zgliczynski Journal of Automated Reasoning, 2015

I useful to count the number of 0
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Verifying loops in robot trajectories under uncertainties

Powerful topological degree
Topological degree for zero verification

Our application for loop detection:
I deals with the relatively easy case n = 2 (t1, t2)
I nice geometric interpretation

:
I winding number of the curve ∂Ω

f∗→ R2 \ {0} around 0

t1

t2

Ω ∂Ω

f∗

deg = 0 deg = 1 deg = 2 deg = 3
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Verifying loops in robot trajectories under uncertainties

Outer approximation of a set T with SIVIA
Topological degree for zero verification

Consider T ⊂ Rn in which we want to find zeros of f∗.

T1

T2

t1

t2

Outer set has the properties required for Ω: f∗(t) 6= 0, ∀t ∈ ∂Ω
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Verifying loops in robot trajectories under uncertainties

Section 6

Application
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Redermor mission
Application

2 hours experimental mission in Brittany (France)

The Redermor Autonomous Underwater Vehicle (AUV)
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Verifying loops in robot trajectories under uncertainties

Redermor mission
Application

Tube of proprioceptive measurements [v](·):

-1.5

-1

-0.5

0

0.5

1

1.5

2

[v1] (m/s)

t

East speed velocity tube [v1](·)
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Verifying loops in robot trajectories under uncertainties

Guaranteed computation of the trajectory
Application

-200 0 200 400 600 800

-200

0

200

400

600

800

p2 (m)

p1 (m)

p(t0)

p(tf )

existence

not proven

2d trace of Redermor AUV
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Verifying loops in robot trajectories under uncertainties

t-plane of the mission: T = {(t1, t2) | 0 ∈ [f ](t1, t2), t1 < t2}
Application

t2 (s)

t1 (s)

existence
not proven

0 6000

6000

t-plane corresponding to Redermor’s mission
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Verifying loops in robot trajectories under uncertainties

Overview and results
Application
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Loop proof number

Without uncertainties:

λ∗ = #
{
t | f∗(t) = 0, t1 < t2

}
(11)

Results:

Newton operator test: λN = 14
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Loop proof number

Without uncertainties:

λ∗ = #
{
t | f∗(t) = 0, t1 < t2

}
(11)

Results:

Newton operator test: λN = 14

Topological degree test: λT = 24



Verifying loops in robot trajectories under uncertainties

Overview and results
Application

-200 0 200 400 600 800

-200

0

200

400

600

800

p2 (m)

p1 (m)

p(t0)

p(tf )

existence

not proven

-40 -20 0 20 40 60 80-10

0

10

20

30

40

50

60

70

80

90

100

110

p1

p2

p(t−1 )

p(t+1 )p(t−2 )

p(t+2 )

Simon Rohou SWIM 2019 (Palaiseau) 28 / 31

Loop proof number

Without uncertainties:

λ∗ = #
{
t | f∗(t) = 0, t1 < t2

}
(11)

Results:

Newton operator test: λN = 14

Topological degree test: λT = 24

Truth: λ∗ = 24
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Conclusion

Loop proof ⇔ verified existence of a 0 of an uncertain function:
I situation where the exact values of the function are not known
I have to deal with a reliable approximation of it

Topological degree theory:
I well suited in this case
I applied in a 2d context

I optimal results

� Proving the existence of loops in robot trajectories
S. Rohou, P. Franek, C. Aubry, L. Jaulin The International Journal of Robotics Research, 2018
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Future work

Now that loops are proved with proprioceptive measurements...

...it remains to perform localization by adding environment perceptions.
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Verifying loops in robot trajectories under uncertainties

Tubex library

An open-source C++ (Python) library based on IBEX and providing
tools for constraint programming over dynamical systems.

I Tube, TubeVector, . . .
I contractors (delays, differential eq., time uncertainties...)
I robotic tools and applications

δ

t

[x]

tf
t0

x∗(t)

http://www.simon-rohou.fr/research/tubex-lib/
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http://www.simon-rohou.fr/research/tubex-lib/


Verifying loops in robot trajectories under uncertainties

Section 10
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Another experiment (Daurade AUV)
Appendix
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Verifying loops in robot trajectories under uncertainties

Reliable approximation of absolute speed v∗(·)
Appendix

Robot sensors for absolute speed computation:
I velocity sensor (DVL)
I inertial measurement unit

Uncertainties:

I datasheets =⇒ standard deviation σ for each sensor
I 95% confidence rate: v∗1 ∈ [v1] = [v1 − 2σ, v1 + 2σ]

0.683

0.954

v1 − 2σ v1 − σ v1

v1 v1

v

I uncertainties propagated thanks to interval arithmetic
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Verifying loops in robot trajectories under uncertainties

Tubes: computer representation
Appendix

Implementation enclosing [x−(·), x+(·)] inside an interval of step
functions [x−(·), x+(·)] such that:

∀t ∈ R, x−(t) 6 x−(t) 6 x+(t) 6 x+(t)

δ

t

[x]

tf
t0

x∗(t)

tube implementation with a set of boxes – this outer representation adds
pessimism but enables guaranteed and simple computations
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Verifying loops in robot trajectories under uncertainties

Tubes integral: implementation
Appendix

Outer approximation of the integral computed by:∫ b

a

[x](τ)dτ ⊂

[∫ b

a

x−(τ)dτ,

∫ b

a

x+(τ)dτ

]
[Aubry2013]

t

[x]

b
a

∫ b

a

x−(τ)dτx−(t)

blue area: outer approximation of the lower bound of the tube’s integral
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