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Problem: we consider the guaranteed non-linear state estimation of a
robot described by the following state equations:{

ẋ(·) = f
(
x(·),u(·)

)
,

zi = g
(
x(ti)

)
,

(1a)

(1b)

where x(t) ∈ Rn is the state vector representing the system at time t and
f : Rn×Rm → Rn a non-linear function depicting the evolution of the system
based on input vectors u(t) ∈ Rm. The observation function g : Rn → Rp

may also be non-linear. The ti ∈ R, i ∈ N, are measurement times and the
zi ∈ Rp are the related outputs.

Approach: we will deal with this dynamical system by using a constraint
programming approach. In a nutshell, the method consists in breaking the
Equations (1a),(1b) into a set of elementary constraints that must be satisfied
by the variables of the problem. In our case, the constraints may be non-
linear or differential equations and the variables are vectors (e.g. zi ∈ Rp) or
trajectories (e.g. x(·) ∈ R→ Rn).

The variables are known to belong to some domains. For vectors of Rn,
we will use boxes in IRn. For trajectories, we will use tubes denoted by
[x](·) : R→ IRn. Constraints will be applied on these domains by means of
operators called contractors C [2].

Contribution: the problem involves algebraic and differential constraints
on trajectories such as a(·) = sin

(
b(·)
)

or ẋ(·) = v(·). The related contractors



have been the subject of some work. It remains to deal with the following
elementary constraint denoted by Leval:

Leval

(
t, z, y(·), w(·)

)
:
{
z = y(t) , ẏ(·) = w(·)

}
(2)

with t ∈ [t], z ∈ [z], y(·) ∈ [y](·), w(·) ∈ [w](·). Here, w(·) is the derivative
of the signal to be evaluated. The problem is complex as the uncertainties
related to t are difficult to propagate through the differential equation.

We propose the related contractor Ceval, see [1], that will reliably reduce
the sets of feasible solutions by contracting the bounds of the tube [y](·) and
the intervals [t] and [z]. Figure 1 provides an illustration of the evaluation of
a trajectory in a bounded-error context.
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Figure 1: Evaluation on a tube [y](·). A given measurement m ∈ R2, pictured
by a black dot, is known to belong to the blue box [t] × [z]. The tube is
contracted by means of Ceval; the contracted part is depicted in light gray.
Meanwhile, the bounded observation itself is contracted to [t′] × [z′] with
[t′] ⊆ [t] and [z′] ⊆ [z]. This is illustrated by the red box. The dark line is
an example of a compliant trajectory.
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