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Constraint programming over dynamical systems

Constraint programming in a nutshell

Example in R?:
» system solving described by a constraint network

» variables (vectors x € R"™) belonging to domains X

Constraint network:
Q Variables: x
Domains: X
Constraints:

domain X
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Constraint programming in a nutshell

Example in R?:
» system solving described by a constraint network
» variables (vectors x € R"™) belonging to domains X
» continuous constraints £: non-linear equations, inequalities, ...

> representable domains: interval-vectors [x] € IR"

Constraint network:

Variables: x
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Constraint programming in a nutshell

Example in R?:
» system solving described by a constraint network
» variables (vectors x € R"™) belonging to domains X
» continuous constraints £: non-linear equations, inequalities, ...
> representable domains: interval-vectors [x] € IR"
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Constraint programming over dynamical systems

Constraint programming in a nutshell

Example in R?:
» system solving described by a constraint network
» variables (vectors x € R"™) belonging to domains X
» continuous constraints £: non-linear equations, inequalities, ...
> representable domains: interval-vectors [x] € IR"
» resolution by contractors, C.([x])

Constraint network:

Variables: x
Domains: X C [x]

Constraints:
]7 1. Li(x) — C1([x])

el 2. La(x) = Ca([x))
N 3 ...

solution
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Constraint programming over dynamical systems

Extension to dynamical systems

Only few work on constraints for dynamical systems:
» Hickey 2000
» Janssen, Van Hentenryck, and Deville 2002
» Cruz and Barahona 2003
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Constraint programming over dynamical systems

Extension to dynamical systems

Only few work on constraints for dynamical systems:
> Hickey 2000

» Janssen, Van Hentenryck, and Deville 2002
» Cruz and Barahona 2003

New approach:
» variables: trajectories, x(-) : R — R"
» domains: tubes, [x](:): R — IR"

Set-membership state estimation with fleeting data
F. Le Bars, J. Sliwka, L. Jaulin, O. Reynet Automatica, 2012

Solving Non-Linear Constraint Satisfaction Problems Involving Time-Dependant Functions
A. Bethencourt, L. Jaulin. Mathematics in Computer Science, 2014
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Drifive widh ceelligiion earsmEnis
Constraint programming over dynamical systems

Extension to dynamical systems

Only few work on constraints for dynamical systems:
> Hickey 2000

» Janssen, Van Hentenryck, and Deville 2002
» Cruz and Barahona 2003

New approach:
» variables: trajectories, x(-) : R — R"
» domains: tubes, [x](:): R — IR"

Set-membership state estimation with fleeting data
F. Le Bars, J. Sliwka, L. Jaulin, O. Reynet Automatica, 2012

Solving Non-Linear Constraint Satisfaction Problems Involving Time-Dependant Functions
A. Bethencourt, L. Jaulin. Mathematics in Computer Science, 2014

Our contribution:

» develop primitive dynamical contractors
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Constraint programming over dynamical systems

Tubes

Tube [z](-): interval of trajectories [z~ (-
such that Vt € R, 7 (¢) < =1 (%)

] (i) () \ } (2] (t2)
} QD !

Tube [z](-) enclosing an uncertain trajectory z*(-)
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Constraint programming over dynamical systems

Tubes

Tube [z](-): interval of trajectories [z~ (-
such that Vt € R, 7 (¢) < =1 (%)

[z]

] (i) () \ } (2] (t2)
} QD !

Tube [z](-) enclosing an uncertain trajectory z*(-)
» dot notation (+)
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Constraint programming over dynamical systems

Tubes arithmetic

[] []
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Constraint programming over dynamical systems

Tube contractor

Contractor on boxes can be extended to sets of trajectories (tubes).

A contractor C. applied on a tube [z](-) aims at removing
infeasible trajectories according to a given constraint £ so that:
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Tube contractor

Contractor on boxes can be extended to sets of trajectories (tubes).

A contractor C. applied on a tube [z](-) aims at removing
infeasible trajectories according to a given constraint £ so that:

(i) Vte lto,tg], Ce([2](t)) C [2](2) (contraction)

1 L’(a;()) (- x|(- consistenc
i) (LG ) = e e (el (consisency)
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Constraint programming over dynamical systems

Constraint 2(-) = v(-)

Differential constraint:

La(x(),v()) : &() = ()
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Constraint programming over dynamical systems
Constraint @(-) = v(-) ol
Differential constraint:

Ly (@()o0) i) =o()

dat

Related contractor C . :
dt

> () € [2]() O

> o) € [o]()
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Constraint programming over dynamical systems

Constraint @(-) = v(-)

[]()
Differential constraint:
L (2()00)) £ 30) = ()
Related contractor C : N .
dt 18570 3 T 5 ) 75 3

> () € [o]()
> o) € b]()
> Cy (2] 0]()
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Constraint programming over dynamical systems

Constraint @(-) = v(-)

[]()
Differential constraint: N
Lo(a()w0) i) =0()
Related contractor C : N .
dt 18570 3 T 5 ) 75 3

> () € [o]()
> o) € b]()
> Cy (2] 0]()

Guaranteed computation of robot
trajectories

Rohou, Jaulin, Mihaylova, Le Bars, Veres

Robotics and Autonomous Systems, 2017
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Constraint programming over dynamical systems

State estimation

Classical formalization:

{ x(-) = £(x(-),u(")) (evolution)

z = g(x(t)) (observations)

Simon Rohou SCAN 2018 (Tokyo) 9/ 23



Dealing with evaluation constraints Tt =1 e W BT TET RSV AT T

Constraint programming over dynamical systems

State estimation

Classical formalization:

{ x(-) = f(x(-),u(")) (evolution)

z = g(x(t)) (observations)

Decomposition:

Lov() =£(x(),u()

2 %() = ()
3. y() = g(x())
4. z=y(t)
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Constraint programming over dynamical systems

State estimation

Classical formalization:

{ x(-) = £(x(-),u(")) (evolution)

z = g(x(t)) (observations)

Decomposition: Constraints — Contractors:
L ov() = £(x(-),u() 1. Cf( (:),x(-),u(-)) (arithmetic composition)
2. %()=v() 2. Ca (x(-),v())
3. y() = g(x(-)) 3. ( (-),x(-)) (arithmetic composition)
4 z=y(t) 4. Covar(t, 2,y("))
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Section 2

Constraint L. z = y(t)
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Constraint Levar: z = y(t)
Definition

( Variables: t, z, y(-)
Domains: [t], [2], [v](*)

Leval : Constraints:
1L z=y(t)

Leval €quivalent to:
el Fzeld, WO e ) | 2=y

Reliable non-linear state estimation involving time uncertainties
S. Rohou, L. Jaulin, L. Mihaylova, F. Le Bars, S. M. Veres. Automatica, 2018
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Constraint Levar: z = y(t)
Definition

( Variables: t, z, y(-), w(-)
Domains: [t], [2], [y](-), [w](-)
Levyal : Constraints:
1 z=y(t)
L 2. 9()=w

Leval €quivalent to:
el Fzeld, WO e ) | 2=y

()

Reliable non-linear state estimation involving time uncertainties
S. Rohou, L. Jaulin, L. Mihaylova, F. Le Bars, S. M. Veres. Automatica, 2018
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Constraint Levai: z = y(t)
Contractor Ceyq: illustration

t

Bounded evaluation with contractions of [y](-) and both [t] and [z] by means of Ceyal.
The tube’s contracted part is depicted in light gray.
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Constraint Levai: z = y(t) ) ] ’

Ceval([t]a [z]v [y]()v [w]()) ‘

Definition:
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Constraint Levai: z = y(t)

Ceval([t]a [z]v [y]()v [w]()) ‘

Definition:
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08 06

Constraint Levai: z = y(t)

Cora (11,121, ) (). [w]()) »

06

Definition:
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508 06 -0

Constraint Leva: 2 = y(t)

Cova([1], (2], [91), [0] ()

06

Definition:
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Constraint Levar: z = y(t) [

Cenn (1] [2]: 1)) ) ()

Definition:
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Constraint Levar: z = y(t) [

Cenn (1] [2]: 1)) ) ()

Definition: y.dim
[t]
[2]
Ceval
IO I E—
[w] ()

Simon Rohou
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Section 3

Application: robot localization
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Application: robot localization

State estimation based on low-cost beacons

Robot R evolving amongst low-cost beacons By:
» initial value unknown
» discrete set of range-only measurements

e beacons By,
e R's unknown
trajectory x*

Bounded measurements:
» command vector u(-) € [u](-)
» range values z; € [z;] (distance R <+ By, discrete observations)

» related time measurements ¢; € [t;]
Simon Rohou SCAN 2018 (Tokyo) 15 / 23
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Application: robot localization

State equations — x = {x1,x9,%,9}7

1. Evolution state equation, x = f(x)
System modeled by the following evolution function:

a1 ¥ cos(v)

i‘g . f ) Sin(i/J)
N (1)
T4 =10 U9
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1. Evolution state equation, x = f(x)
System modeled by the following evolution function:

a1 ¥ cos(v)

i‘g . f ) Sin(i/J)
N (1)
T4 =10 U9

Input u(t) € R?, bounded as:

—9/20 cos(t/5) 1 [—1,1]
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Application: robot localization

State equations — x = {x1,x9,%,9}7

1. Evolution state equation, x = f(x)
System modeled by the following evolution function:

a1 ¥ cos(v)

i‘g . f ) Sin(i/J)
N (1)
T4 =10 U9

Input u(t) € R?, bounded as:
—9/20 cos(t/5) 1 ([ [=11]
u(t) € [ul(t) = ( 110 + sin(/s) ) + 1000( —1.1] ) (2)

2. Observation state equation, z; = gx(x(t;))
Distance function:

91(%) = \/ (1 — bi1)2 + (22— bi2)? (3)
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Application: robot localization

Beacons' location and list of measurements ([t;], [2i])

Simon Rohou

1 [ B [14.75,15.55] [11.69,12.69]
2 | @ [20.80,21.60] [15.40,16.40]
3 | o [23.80,24.60] [10.62,11.62]
k by, 4 [ o [26.80,27.60] [11.05,12.05]
a  (30,20) || 5 [« [29.80,30.60] [11.87,12.87]
B (80,—5) || 6 | o [32.80,33.60] [15.31,16.31]
v (125,20) || 7 [ v [44.35,45.15] [13.65,14.65]
8 | v [47.35,48.15] [13.32,14.32]
9 | v [50.35,51.15] [12.03,13.03]
10 | v [53.35,54.15] [15.98,16.98]
11| B3 [56.75,57.55] [17.45,18.45]

SCAN 2018 (Tokyo)
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Application: robot localization

( Variables:

Domains:

Constraints:

Note: initial position (x1(0),22(0)) not priorly known.
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Drifive widh ceelligiion earsmEnis
Application: robot localization

( Variables:
u(-),v(-),x()
Domains:
[u](-), V1), [(x]()
Constraints:
1. State evolution:
> V() = £(x(),u()
> X(-) =v()

Note: initial position (x1(0),22(0)) not priorly known.
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Dealing with evaluation constraints
Application: robot localization
( Variables:
u(-),v(),x(-), {yx(-)}
Domains:
[u] (), [VIC), (] (), { el ()}
Constraints:
1. State evolution:
> v(:) =f(x(-),u(-))
> X(-) =v()
2. Beacon-robot distance function:
> ye() = V(@) = bra)? + (22() = br2)?

\

Note: initial position (x1(0),22(0)) not priorly known.
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Dealing with evaluation constraints
Application: robot localization
( Variables:
u(-),v(),x(), {yr()}, {(ti, z1) }
Domains:
(] (), [VIC), (x] (), {Twel ()}, {([t:], [z])}
Constraints:
1. State evolution:
> v(:) =f(x(-),u(-))
> X(-) =v()
2. Beacon-robot distance function:
> ye() = V(@) = bra)? + (22() = br2)?

3. Measurements:

> 2z = yr(ts)

\

Note: initial position (x1(0),22(0)) not priorly known.
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Dealing with evaluation constraints
Application: robot localization
( Variables:
u(-), v(),x(), {yr ()} {(ti, z0)}, {we ()}
Domains:
(] (), [VIC), <] C) { el ()3 L[], [za) )5 {Tw] ()}
Constraints:
1. State evolution:
> v(:) =f(x(-),u(-))
> X(-) =v()
2. Beacon-robot distance function:
> ye() = V(@) = bra)? + (22() = br2)?

3. Measurements:
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Drifive widh ceelligiion earsmEnis
Application: robot localization

( Variables:

u(-),v(),x(), {ye ()} {(ti, z0) b, {wr ()}
Domains:
[l (), [vIC), (x]C)s {lwel (O} {([E], [2)) 3 {Twe] ()}
Constraints:
1. State evolution:
> v() =f(x(-),u())
> %()=v()
2. Beacon-robot distance function:
> yi(-) = V(@1 () = br,1)? + (22() — br2)?
N dyk()
> we() = =
3. Measurements:
> 2z = yi(ts)
\ k() = we(4)

Note: initial position (x1(0),22(0)) not priorly known.
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Application: robot localization

Variables:

u(-), v(-),x() {ye ()}, {(ts 20) 5 {we ()}
Domains:
[u](-), V1), ] C)s {Twl ()} {([Eal [2:D) } 5 {[wr] ()}
Constraints: Contractor programming
1. State evolution: algorithm:
> v() =f(x(),u() > Ce([vV](), B, [ul ()
> () =v() > Cy (1X(), V()

2. Beacon-robot distance function:

> () = V@0 b P+ @0 b2l ek (pd(), )

dyi(-)
> wi() = A > Classe (6] (), [)()
3. Measurements:
> zi = yr(ts) > Covar ([t4], [2:], [yr] (), [we](+)
> () = wi () ( ! !

Note: initial position (x1(0),22(0)) not priorly known.

Simon Rohou SCAN 2018 (Tokyo) 18 / 23
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Application: robot localization

An iterative resolution process

Let us define d : TR? — R the diagonal of a position box [21] x [x2]:
A = /(e —o7)" + (oF —23)°
d([x])

1% iteration

274 jteration

5

fixed point

t

00 5 10 15 20 25 30 35 "0 15 "'50 55 60

Thicknesses of robot's positions estimation [z1](+) X [z2](+) for each iteration step.
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Application: robot localization

Overview of state estimations

)

e tube [x12](-) (t; known)
tube [XLQ](‘) (tl S [tz])

T T T T T T T T T
0 20 40 60 80 100 120 140
Projections of the resulting tube [x](-) in blue and gray.
In gray: computed envelope assuming time uncertainties.
In blue: estimations that would have been obtained without time uncertainties.
Rohou SCAN 2018 (Tokyo)
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Application: robot localization

Overview of state estimations
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Section 4

Conclusions
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Conclusions

Contractor programming on tubes:
» non-linear and differential systems

» generic and simple estimation approaches

Contractor Cgyy:
» elementary operator in the contractor prog. framework
» original method to deal with (strong) time uncertainties

» allows one to consider state estimation problems from a
temporal point of view where the time ¢ becomes an
unknown variable to be estimated

Simon Rohou SCAN 2018 (Tokyo) 22 /23
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Conclusions

Tubex library

An open-source C++ library based on IBEX and providing tools for

constraint programming over dynamical systems.
» Tube, TubeVector, ...
> contractors C%’ Ceval, Cdelay, - - -
t

> robotic tools and applications

[2]

http://www.simon-rohou.fr/research/tubex-1ib/
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Robot localization — temporal resolution

Trajectory p(-) : R — R? crossed at times t1, t2: p(t1) = p(t2).

2552 R = e
5% T s S
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Constraint: 12 T™*C T

> p(t1) = p(ta)
>t € [t1], t2 € [t2]

1. approximation of a
temporal set T with
evolution constraints

2. contraction of T
thanks to
exteroceptive
measurements
(ex: bathymetry)

tq
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Constraint: 12 T™*C T

> p(t1) = p(ta)
>t € [t1], t2 € [t2]

1. approximation of a
temporal set T with
evolution constraints

2. contraction of T [ta]
thanks to
exteroceptive
measurements
(ex: bathymetry)

tq

[t4]
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[pI(-)

[PI([t1])

[t1] [t
Constraint Ly, 1, (t1,t2, p(+), w(-)) : { g(?l) -~ p@)
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[ta]

Constraint Ly, ¢, (tl,tz,p(-),W(')) : { g(h) ~ pth)
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Q)

feasible trajectory

[p(ta])

[tz]

Constraint Ly, ¢, (t1,t27P('),W(')) : { g(h) ~ p@)
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Time uncertainties in state estimation

Application example: wreck based localization

The Swansea wreck perceived with a side scan sonar (Rade de Brest).

The ship’s funnel and superstructures cause wide shadowed areas: the darkest parts of
the sonar image.

Copyrights: SHOM, DGA-TN Brest, Michel Legris.
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Several evaluations: fixed point iteration
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Left: one iteration. Right: fixed point result.
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Tube inversion
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Tube set-inversion [y]~1([z]) = lee[z] {tlyecl®)}
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