
Reliable robot localization: a constraint programming approach over dynamical systems

Reliable robot localization:
a constraint programming approach

over dynamical systems

Simon Rohou

ENSTA Bretagne, Lab-STICC, UMR CNRS 6285, Brest, France
The University of Sheffield, Sheffield, UK

simon.rohou@gmail.com

26th January 2018

Simon Rohou 26/01/2018 Sheffield 1 / 47



Reliable robot localization: a constraint programming approach over dynamical systems

Outline

1. Motivations

2. SLAM formalization

3. Constraint programming

4. Constraint Linter: p(t1) = p(t2) =⇒ z(t1) = z(t2)

5. Bathymetric SLAM

6. Conclusions

Simon Rohou 26/01/2018 Sheffield 2 / 47



Reliable robot localization: a constraint programming approach over dynamical systems

Section 1

Motivations

Simon Rohou 26/01/2018 Sheffield 3 / 47



Reliable robot localization: a constraint programming approach over dynamical systems

Motivations, robot localization: p(t) = ?
Motivations

Underwater exploration without surfacing:
I reasons of discretion and security (military missions)
I case of very deep environments (wrecks search)

Titanic wreck: 3821m deep Lost MH370 aircraft: up to 6000m deep
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Motivations, wreck localization
Motivations

Simultaneous destruction of La Cordelière and the Regent, 10th August 1512
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Motivations

Simple solution, dead-reckoning:
I navigation based on proprioceptive measurements
I fast drift on position estimation: strong errors

p0

p(t) = ?

truth

estimation
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Motivations, robot localization: p(t) = ?
Motivations

Exploration solution, SLAM:
I Simultaneous Localization and Mapping
I come back to a previous pose and recognize the environment

seamark

Localization of the
seamark by the robot

Localization of the robot
based on the previous

estimation of the seamark
p(t1)

p0
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Problem: homogeneous environments
Motivations
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Under the surface:
I no seamarks or points of interest
I usual SLAM methods do not apply
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Problem: homogeneous environments
Motivations
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I a robot coming back to a previous position
should sense the same observations

I for instance, bathymetric measurements
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Mobile robotics
SLAM formalization

Robot localization = state estimation problem.
Classically, we have:{

ẋ(t) = f
(
x(t),u(t)

)
(navigation)

z(t) = g(x(t)) (measurements)

Where:

I x ∈ Rn is the state vector (position, bearing, . . . )
I u ∈ Rm is the input vector (command)
I f : Rn × Rm → Rn is the evolution function

g : Rn → Rp is the observation function
y ∈ Rp is some exteroceptive measurement (camera, sonar...)
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Bathymetric SLAM: observation function g not at hand
SLAM formalization

Observation equation:
I z(t) = g(x(t))
I expression of g unknown =⇒ no relation between z and x

I main approach: inter-temporal measurements
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New SLAM formalism: inter-temporal measurements
SLAM formalization
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Raw-data SLAM equations:
ẋ(t) = f(x(t)) (navigation)
z(t)�����

= g(x(t)) (observation)

h
(
x(t1)

)
= h

(
x(t2)

)︸ ︷︷ ︸
same state configurations

=⇒ z(t1) = z(t2)︸ ︷︷ ︸
same observations

(inter-temporality)
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I h : Rn → Rn′ , the configuration function

I h defined according to properties assumed on the
unknown observation function g
I translational symmetries, spherical symmetries, . . .
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New SLAM formalism: inter-temporal measurements
SLAM formalization
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New SLAM formalism: inter-temporal measurements
SLAM formalization

Assumptions:
I bounded error context
I no unpredictable change in the environment

I sufficient spatial variations

Looking for MH370 – c 2014, Commonwealth of Australia
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Section 3

Constraint programming
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Main approach
Constraint programming
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Example in R2:
I system solving described by a constraint network
I variables (vectors x ∈ Rn) belonging to domains X

I continuous constraints L: non-linear equations, inequalities, . . .
I representable domains: interval-vectors [x] ∈ IRn

I resolution by contractors, CL([x])

solution

domain X

Constraint network:

Variables: x

Constraints:

1. L1(x)
2. L2(x)
3. . . .

Domains: X
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Extension to dynamical systems
Constraint programming

Only few work on constraints for dynamical systems:
I Janssen, Van Hentenryck, and Deville 2002
I Hickey 2000
I Cruz and Barahona 2003

New approach: Le Bars et al. 2012; Bethencourt and Jaulin 2014
I variables: trajectories, x(·) : R+ → Rn

I domains: tubes, [x](·) : R+ → IRn

PhD thesis objectives:
I develop primitive dynamical contractors
I application to robot localization
I dynamical constraint 6⇐⇒ set of continuous constraints
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Tubes
Constraint programming

Tube [x](·): interval of trajectories [x−(·), x+(·)]
Tube [x](·): such that ∀t ∈ R, x−(t) 6 x+(t)

t

[x]

tf
t0

x∗(t)

Tube [x](·) enclosing an uncertain trajectory x∗(·)
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Tubes arithmetic
Constraint programming

[x]

t

[y]

t

[a]

t

[b]

t

[c]

t

[a](·) = [x](·)+[y](·) [b](·) = sin
(
[x](·)

)
[c](·) =

∫
0

[x](τ)dτ
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SLAM under constraints
Constraint programming

SLAM: constraint problem over trajectories

SLAM :



Variables:

x(·), z(·), v(·), p(·)

Constraints:

1. Evolution constraint:

I v(·) = f
(
x(·)

)

←− algebraic constraint

I ẋ(·) = v(·)L d
dt

()

2. Inter-temporal constraint:

I p(·) = h
(
x(·)

)

←− algebraic constraint

I p(t1) = p(t2) =⇒ z(t1) = z(t2)Linter

()

Domains:

[x](·), [z](·), [v](·), [p](·)
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{
ẋ(·) = f(x(·))
h
(
x(t1)

)
= h

(
x(t2)

)
=⇒ z(t1) = z(t2)
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L d
dt

(
x(·),v(·)

)Constraint programming

Differential constraint:
I ẋ(·) = v(·)
I elementary constraint

Related contractor C d
dt
:

I one tube [x](·)
I one tube [v](·)

I C d
dt

(
[x](·), [v](·)

)
� Guaranteed computation of robot
trajectories

Rohou, Jaulin, Mihaylova, Le Bars, Veres

Robotics and Autonomous Systems, 2017
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Section 4

Constraint Linter:
p(t1) = p(t2) =⇒ z(t1) = z(t2)

Simon Rohou 26/01/2018 Sheffield 23 / 47



Reliable robot localization: a constraint programming approach over dynamical systems

Linter: physical interpretation
Constraint Linter: p(t1) = p(t2) =⇒ z(t1) = z(t2)

A robot coming back to a previous position p
should sense the same observation z.

p(t1) = p(t2)

p2

p1

z

t

Method: temporal resolution, estimation of feasible pairs (t1, t2)
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Temporal decomposition
Constraint Linter: p(t1) = p(t2) =⇒ z(t1) = z(t2)

p(t1) = p(t2)︸ ︷︷ ︸
1

=⇒ z(t1) = z(t2)︸ ︷︷ ︸
2

Temporal space. Sets of t-pairs defined by:

I the cause 1 :
T∗p =

{
(t1, t2) ∈ [t0, tf ]

2 | p(t1) = p(t2) , t1 < t2
}

I the effect 2 :
T∗z =

{
(t1, t2) ∈ [t0, tf ]

2 | z(t1) = z(t2) , t1 < t2
}

From the implication 1 =⇒ 2 :

T∗p ⊂ T∗z
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Linter: constraint network
Constraint Linter: p(t1) = p(t2) =⇒ z(t1) = z(t2)

Linter :



Variables: p(·), z(·)

Internal variables: T∗p, T∗z
Constraints:

1. T∗p = {(t1, t2) | p(t1) = p(t2)}
2. T∗z = {(t1, t2) | z(t1) = z(t2)}
3. T∗p ⊂ T∗z

Domains: [p](·), [z](·), Tp, Tz
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Linter: physical interpretation
Constraint Linter: p(t1) = p(t2) =⇒ z(t1) = z(t2)
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Constraints:
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Bounded-error context
Constraint Linter: p(t1) = p(t2) =⇒ z(t1) = z(t2)

Approximation of the enclosure of t-sets with SIVIA algorithms:

p1

p2

(a) Bounded trajectories
t1

t2

(b) Approximation of Tp
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The Cinter contractor: t-sets fusion
Constraint Linter: p(t1) = p(t2) =⇒ z(t1) = z(t2)

Constraint:
I T∗p ⊂ T∗z
I T∗p ∈ Tp, T∗z ∈ Tz

Contraction:
I Tp := Tp ∩ Tz

Simon Rohou 26/01/2018 Sheffield 31 / 47
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Constraint T∗p = {(t1, t2) | p(t1) = p(t2)} in backward
Constraint Linter: p(t1) = p(t2) =⇒ z(t1) = z(t2)

Simon Rohou 26/01/2018 Sheffield 32 / 47

t1

t2

[t1]

[t2]

I time uncertainties: [t1], [t2]

I constraint
Lt1,t2

(
t1, t2,p(·)

)
: p(t1) = p(t2)

I strong contribution of this thesis:

I no already existing method

I study of the Ceval contractor
I � Reliable non-linear state estimation

involving time uncertainties
Rohou, Jaulin, Mihaylova, Le Bars, Veres
Automatica, submitted



Reliable robot localization: a constraint programming approach over dynamical systems

Constraint T∗p = {(t1, t2) | p(t1) = p(t2)} in backward
Constraint Linter: p(t1) = p(t2) =⇒ z(t1) = z(t2)

Simon Rohou 26/01/2018 Sheffield 32 / 47

t1

t2

[t1]

[t2]

I time uncertainties: [t1], [t2]

I constraint
Lt1,t2

(
t1, t2,p(·)

)
: p(t1) = p(t2)

I strong contribution of this thesis:

I no already existing method

I study of the Ceval contractor
I � Reliable non-linear state estimation

involving time uncertainties
Rohou, Jaulin, Mihaylova, Le Bars, Veres
Automatica, submitted



Reliable robot localization: a constraint programming approach over dynamical systems

Constraint T∗p = {(t1, t2) | p(t1) = p(t2)} in backward
Constraint Linter: p(t1) = p(t2) =⇒ z(t1) = z(t2)

Simon Rohou 26/01/2018 Sheffield 32 / 47

t1

t2

[t1]

[t2]

I time uncertainties: [t1], [t2]

I constraint
Lt1,t2

(
t1, t2,p(·)

)
: p(t1) = p(t2)

I strong contribution of this thesis:

I no already existing method

I study of the Ceval contractor
I � Reliable non-linear state estimation

involving time uncertainties
Rohou, Jaulin, Mihaylova, Le Bars, Veres
Automatica, submitted



Reliable robot localization: a constraint programming approach over dynamical systems

Constraint T∗p = {(t1, t2) | p(t1) = p(t2)} in backward
Constraint Linter: p(t1) = p(t2) =⇒ z(t1) = z(t2)

Simon Rohou 26/01/2018 Sheffield 32 / 47

t1

t2

[t1]

[t2]

I time uncertainties: [t1], [t2]

I constraint
Lt1,t2

(
t1, t2,p(·)

)
: p(t1) = p(t2)

I strong contribution of this thesis:

I no already existing method

I study of the Ceval contractor
I � Reliable non-linear state estimation

involving time uncertainties
Rohou, Jaulin, Mihaylova, Le Bars, Veres
Automatica, submitted



Reliable robot localization: a constraint programming approach over dynamical systems

The Ct1,t2
(
[t1], [t2], [p](·)

)
contractor

Constraint Linter: p(t1) = p(t2) =⇒ z(t1) = z(t2)

t

[p](·)

[t1] [t2]

[p]([t1])

Importance of the derivative w(·)

Lt1,t2

(
t1, t2,p(·),w(·)

)
:

{
p(t1) = p(t2)
ṗ(·) = w(·)
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Summary
Constraint Linter: p(t1) = p(t2) =⇒ z(t1) = z(t2)

Linter

(
p(·), z(·),w(·)

)
:

{
p(t1) = p(t2) =⇒ z(t1) = z(t2)

ṗ(·) = w(·)
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Section 5

Bathymetric SLAM
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Contractor programming
Bathymetric SLAM

SLAM: constraint problem over trajectories

SLAM :



Variables: x(·), z(·), v(·), p(·)

, w(·)

Constraints:
1. Evolution constraint:

I v(·) = f(x(·))
I L d

dt

(
x(·),v(·)

)
2. Inter-temporal constraint:

I p(·) = h(x(·))
I Linter

(
p(·), z(·)

)

I w(·) = dh

dx(·)
· v(·) = h(v(·))

Domains: [x](·), [z](·), [v](·), [p](·)

, [w](·)
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Contractor programming
Bathymetric SLAM
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{
ẋ(·) = f(x(·))
h
(
x(t1)

)
= h

(
x(t2)

)
=⇒ z(t1) = z(t2)

SLAM constraints:

1. Evolution constraint:
I v(·) = f(x(·))
I L d

dt

(
x(·),v(·)

)
2. Inter-temporal constraint:

I p(·) = h(x(·))
I w(·) = h(v(·))
I Linter

(
p(·),w(·), z(·)

)
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Contractor programming
Bathymetric SLAM
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{
ẋ(·) = f(x(·))
h
(
x(t1)

)
= h

(
x(t2)

)
=⇒ z(t1) = z(t2)

SLAM constraints:

1. Evolution constraint:
I v(·) = f(x(·))
I L d

dt

(
x(·),v(·)

)
2. Inter-temporal constraint:

I p(·) = h(x(·))
I w(·) = h(v(·))
I Linter

(
p(·),w(·), z(·)

)

SLAM algorithm:

1: Cf ([v](·), [x](·))

2: C d
dt
([x](·), [v](·))

3: Ch ([p](·), [x](·))

4: Ch ([w](·), [v](·))

5: Cinter([p](·), [w](·), [z](·), ε)
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Contractor programming
Bathymetric SLAM

Only one parameter to set:

I ε, precision of the approximation of temporal spaces
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Experimental mission with the Daurade AUV
Bathymetric SLAM

I Daurade: Autonomous Underwater Vehicle
I weight: 1010kg – length: 5m – max depth: 300m

Special thanks to DGA-TN Brest (formerly GESMA)
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Experimental mission with the Daurade AUV
Bathymetric SLAM

I 2 hours experimental mission
I in the Rade de Brest, Brittany

Location: Polygone de Rascas – Credits: SHOM
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Evolution measurements
Bathymetric SLAM

I velocity measurements obtained with a DVL
I considering uncertainties, building a tube [v](·)
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Observations measurements: bathymetric values
Bathymetric SLAM

I DVL, same sensor, can provide altitude measurements zalt
I pressure sensor: depth values zdepth
I time-dependent measurements, use of tide models
I z = zalt + zdepth + ztide
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Dead-reckoning
Bathymetric SLAM

Actual trajectory:
I white

Tube of positions:
I blue

Last position box:
I red

Contracted parts:

gray
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Dead-reckoning
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SLAM results
Bathymetric SLAM

Actual trajectory:
I white

Tube of positions:
I blue

Last position box:
I red

Contracted parts:
I gray

-600 -500 -400 -300 -200 -100 0 100 200-200

-100

0

100

200

300

400

500

600

p1 (m)

p2 (m)

Simon Rohou 26/01/2018 Sheffield 43 / 47



Reliable robot localization: a constraint programming approach over dynamical systems

SLAM results
Bathymetric SLAM
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Localization:
I dead-reckoning: linear drift
I SLAM: no cumulated drift

Constraint method:
I iterative resolution
I reliable outputs, pessimism
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Section 6

Conclusions
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Originality of this work
Conclusions

I localization even in case of unknown observation function g
inter-temporal measurements

I consideration of any kind of time-invariant measurements
for instance: temperatures, radioactivity, electric fields

I temporal resolution
approximation of time references

I constraint programming approach
simplicity, genericity, few configurations

I study of new constraints over dynamical systems
L d

dt
, Lt1,t2 , Linter, . . .
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Prospects
Conclusions

I new experiments based on a single-beam echosounder
really convincing results expected

I merge the approach with usual probabilistic methods
e.g. reduce the domain of particle filters

I towards an active SLAM approach
integrate robot control to induce relevant loops

I study a complementary constraint Lt1,t2 : p(t1) 6= p(t2)
and benefit from unconsidered information in temporal sets Tp, Tz
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Uncertain trajectories
Appendices

p0

tube of trajectories

one extreme case
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Differential constraint L d
dt

(
x(·),v(·)

)
: ẋ(·) = v(·)

Appendices

Proposition: contractor C d
dt

defined as

(
[x](t)
[v](t)

) C d
dt7−−−→


tf⋂

t1=t0

(
[x](t1) +

∫ t

t1

[v](τ)dτ

)
[v](t)


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dt
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Evaluation constraint Leval

(
t, z,y(·),w(·)

)Appendices

Leval
(
t, z,y(·),w(·)

)
:

{
z = y(t)
ẏ(·) = w(·)

Proposition: contractor Ceval defined as

 [t]
[z]

[y] (·)
[w] (·)

 Ceval7−−−−→


[t] ∩ [y]−1([z])
[z] ∩ [y]([t])

[y](·) ∩
⊔

t1∈[t]

(
([y](t1) ∩ [z]) +

∫ ·
t1

[w](τ)dτ

)
[w] (·)


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Evaluation constraint Leval

(
t, z,y(·),w(·)

)Appendices

Ceval
(
[t1], [p1]([t2]), [p1](·), [v1](·)

)

Simon Rohou 26/01/2018 Sheffield Appendix 6 / 30

[p1]([t2])

[t1]
t

[p1]
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{
ẋ(·) = f(x(·),u(·))
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The Lt1,t2 constraint: decomposition
Appendices

Lt1,t2 , not canonic, amounts to the following composition:

Variables: t1, t2, y(·)

, w(·)

Constraints:

I y(t1) = y(t2)

⇐⇒


a = y(t1)
b = y(t2)
a = b

⇐⇒


Leval (t1,a,y(·),w(·))
Leval (t2,b,y(·),w(·))
a = b

I ẏ(·) = w(·)

Domains: [t1], [t2], [y](·)

, [w](·)

Leval constraint:

I Leval (t, z,y(·),w(·)) :
{

z = y(t)
ẏ(·) = w(·)
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Daurade mission: 20/10/2015 11h
Appendices

SLAM iterations on Daurade’s experiment:

i

loop
detections

loop
proofs

computation
time

cumulated
comp. time

[p](tf )

contraction
SLAM

algorithm

1 122 104 259s 259s 63.22% fast

2 128 112 192s 451s 71.46% fast

3 128 112 172s 623s 75.17% fast

4 129 115 180s 803s 75.22% fast

5 129 115 182s 985s (0h16) 75.22% fast

fixed point

6 129 115 2708s (0h45) 3693s (1h02) 76.91% accurate

7 129 115 2506s (0h41) 6199s (1h43) 76.96% accurate

8 129 115 2391s (0h40) 8590s (2h23) 76.96% accurate

fixed point
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Daurade mission: 19/10/2015 10h
Appendices

SLAM iterations on Daurade’s experiment:

i

loop
detections

loop
proofs

computation
time

cumulated
comp. time

[p](t0)

contraction
SLAM

algorithm

1 76 65 93s 93s 22.76% fast

2 78 67 90s 183s 22.76% fast

3 78 67 108s 291s (0h05) 22.76% fast

fixed point

4 78 67 1726s (0h29) 2017s (0h34) 31.47% accurate

5 77 67 1392s (0h23) 3409s (0h57) 46.96% accurate

6 77 67 1424s (0h24) 4833s (1h21) 51.85% accurate

7 77 68 1470s (0h24) 6303s (1h45) 51.85% accurate

fixed point
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Dynamical constraints
Appendices

SLAM problem was an opportunity to study the following
elementary constraints:
1. Evolution constraint
L d

dt

(
x(·),v(·)

)
: ẋ(·) = v(·)

2. Evaluation constraint

Leval
(
t, z,y(·),w(·)

)
:

{
z = y(t)
ẏ(·) = w(·)

3. Inter-temporal evaluation constraint

Lt1,t2
(
t1, t2,y(·),w(·)

)
:

{
y(t1) = y(t2)
ẏ(·) = w(·)

4. Inter-temporal implication constraint

Linter
(
y(·),w(·), z(·)

)
:

{
y(t1) = y(t2) =⇒ z(t1) = z(t2)
ẏ(·) = w(·)
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Dynamical constraints
Appendices

Example:
I x = (p1, p2, p3, θ)

ᵀ ∈ R4

I p(t) = h(x(t)) =

(
x1(t)
x2(t)

)

p2

p1

p(t1)

p(t1) = p(t2)p(t1) = p(t2)︸ ︷︷ ︸
z(t1)=z(t2)

p0
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Constraints: decomposition
Appendices

Complex constraints can be broken down.
Example, observation function for range-only state estimation:

Lg
(
ρ,a,b

)
: ρ =

√
(a1 − b1)2 + (a2 − b2)2 ⇐⇒



c = a1 − b1
d = a2 − b2
i = c2

j = d2

l = i+ j

ρ =
√
l

I c, d, . . . , l: intermediate variables used for ease of decomposition
I network of elementary constraints: L−, L+, L(·)2 , L√·
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Constraints: application
Appendices

Each elementary constraint L is applied by an operator:
I a contractor CL : IRn → IRn

I example, C+: (
[a]
[x]
[y]

)
7→

(
[a] ∩ ([x] + [y])
[x] ∩ ([a]− [y])
[y] ∩ ([a]− [x])

)

Contractor programming: Chabert and Jaulin 2009
I contractor seen as a subset of Rn

=⇒ operations on sets applicable on contractors: ∪, ∩, . . .
=⇒ simple combinations of primitive contractors
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Integral of tubes
Appendices

Definition: the integral of a tube [x](·) = [x−, x+] is an interval:

∫ b

a
[x](τ)dτ =

{∫ b

a
x(τ)dτ | x ∈ [x]

}
=

[∫ b

a
x−(τ)dτ,

∫ b

a
x+(τ)dτ

]
[Aubry2013]

t

[x]

b
a

∫ b

a

x−(τ)dτx−(t)

blue area: lower bound of the tube’s integral
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a
x−(τ)dτ,
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a
x+(τ)dτ
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t

[x]

a
b

x+(t)

∫ b

a

x+(τ)dτ

orange area: upper bound of the tube’s integral
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Back to the trajectories space
Appendices

At this point:
I temporal set Tp contracted,
I it remains to contract the positions tube [p](·)

Constraint of interest:
I T∗p = {(t1, t2) | p(t1) = p(t2)}
I backward way: from the set T∗p to the trajectory p(·)

However:
I pessimistic enclosure [p](·): Tp may not contain a solution

=⇒ risk of false contraction
I before contracting [p](·), need to prove that
∃t ∈ Tp | p(t1) = p(t2)

I physically: we need to prove loops along the trajectory p(·)
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Proving the existence of loops
Appendices

p1

p2

Detectable
loop

Detectable and
verifiable loop

� Proving the existence of loops in robot trajectories
S. Rohou, P. Franek, C. Aubry, L. Jaulin. International Journal of Robotics Research, submitted
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Tubex library
Appendices

An open-source C++ library providing tools to guarantee
computations over sets of trajectories.

δ

t

[x]

tf
t0

x∗(t)

http://www.simon-rohou.fr/research/tubex-lib/
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