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Reliable loop-based localization in very poor environments

Motivations, robot localization: p(t) =?
Introduction

Underwater exploration without surfacing:
I case of very deep environments (airplanes search)
I reasons of discretion and security (military mission)

Need for localization methods based on the following constraints:

I no underwater GNSS receiver
I unstructured environment: no landmark
I opacities: limited observations

Steady solution, dead-reckoning:
I navigation based on proprioceptive measurements
I fast drift on position estimation: strong errors
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Reliable loop-based localization in very poor environments

Motivations, robot localization: p(t) =?
Introduction

Exploration solution, SLAM:
I Simultaneous Localization and Mapping
I come back to a previous pose and recognize the environment

I eliminate trajectories not consistent with the observation
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Reliable loop-based localization in very poor environments

Problem: similar environments (singularities)
Introduction

What if we recognize a wrong scene?
I homogeneous environments =⇒ similar observations
I strong positioning drift =⇒ false loop detections

observation A observation B
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Reliable loop-based localization in very poor environments

Problem: similar environments (singularities)
Introduction

Need for loop proof:
I verify that a trajectory crosses itself at some point
I ..whatever the uncertainties describing this trajectory

observation A observation B
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Formalization
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Reliable loop-based localization in very poor environments

Mobile robotics
Formalization

Robot localization = state estimation problem.
Classically, we have:{

ẋ(t) = f(x(t),u(t)) (navigation)
y(t) = g(x(t)) (measurements)

Where:

I x ∈ Rn is the state vector (position, bearing, . . . )
I u ∈ Rm is the input vector (command)
I f : Rn × Rm → Rn is the evolution function

g : Rn → Rp is the observation function
y ∈ Rp is some exteroceptive measurement (camera, sonar...)
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I u ∈ Rm is the input vector (command)
I f : Rn × Rm → Rn is the evolution function

I g : Rn → R is the observation function
I y ∈ R is some scalar measurement (temperature, radioactivity)

simon.rohou@ensta-bretagne.org IMT Atlantique visit 8 / 37



Reliable loop-based localization in very poor environments

Set-membership approach
Formalization

A problem involving constraints is classically presented
with a Constraint Network:

Variables:

x(·), u(·), y(·)

Constraints:

– ẋ (t) = f(x(t),u(t)) (evolution equation)
– y(t) = g (x (t)) (observation equation)

Domains:

[x](·), [u](·), [y](·)

I domains can be intervals, boxes, polytopes, tubes...
I constraints can be applied over the domains thanks to

contractors
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Reliable loop-based localization in very poor environments

Loop-based localization method
Formalization



Variables: x(·), y(·)

, T∗
p = {(t1, t2)}

Constraints:
– ẋ (t) = f(x(t)) (evolution)
– y(t) = g (x (t)) (observation)

– h (x (t1) ,x (t2)) = 0 =⇒ y(t1) = y(t2) (intertemporality)

Domains: [x](·), [y](·)

, Tp

Introducing h : Rn × Rn → R:
I inter-temporal function
I depicts if two states x1, x2 lead to identical observations y1, y2

Temporal resolution:
I a pair (t1, t2) becomes variable
I {(t1, t2)1, . . . , (t1, t2)q} = T∗

p ⊂ Tp ⊂ [t0, tf ]
2
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Reliable loop-based localization in very poor environments

Loop-based localization method
Formalization

Example:
I x = (p1, p2, θ)

ᵀ ∈ R3

I h(x(t1),x(t2)) =

∥∥∥∥∥
(
x1(t2)− x1(t1)
x2(t2)− x2(t1)

)∥∥∥∥∥

p2

p1

p(t1)

p(t1) = p(t2)p(t1) = p(t2)︸ ︷︷ ︸
h(x(t1),x(t2))=0

p0
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Reliable loop-based localization in very poor environments

Section 3

Loop detections
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Reliable loop-based localization in very poor environments

Definitions (Aubry, 2013)
Loop detections

I robot position: p = (x, y)ᵀ ∈ R2

I 2D robot trajectory: p(t) : R→ R2, t ∈ [t0, tf ]

I looped trajectory ⇔ trajectory that crosses itself
I p(t1) = p(t2), t1 6= t2
I 1 loop ⇔ 1 t-pair (t1, t2)
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Reliable loop-based localization in very poor environments

Definitions (Aubry, 2013)
Loop detections

I t-plane ⇔ all feasible t-pairs = [t0, tf ]
2

I loop set T∗
p:

I T∗
p =

{
(t1, t2) ∈ [t0, tf ]

2 | p(t1) = p(t2), t1 < t2
}

I loop set of below example:
I T∗

p = {(ta, tb), (tc, tf ), (td, te)}
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Reliable loop-based localization in very poor environments

Computing loops from proprioceptive sensors
Loop detections

Context: robot trajectory p(t) cannot be directly sensed.
Computation from speed measurements:

p(t) =

∫ t

t0

v(τ)dτ + p0, (1)

with v(t) ∈ R2: robot velocity vector at time t ∈ [t0, tf ].

Loop-set from velocity:

T∗
p =

{
(t1, t2) ∈ [t0, tf ]

2 | p(t1) = p(t2), t1 < t2
}

(2)

=

{
(t1, t2) ∈ [t0, tf ]

2 |
∫ t2

t1

v(τ)dτ = 0, t1 < t2

}
(3)

� Loop detection of mobile robots using interval analysis
C. Aubry, R. Desmare, L. Jaulin. Automatica, 2013
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Reliable loop-based localization in very poor environments

Dealing with inter-temporalities
Loop detections

1 t-pair (t1, t2) =⇒ 1 inter-temporality

Loop-set from trajectory:

T∗
p =

{
(t1, t2) ∈ [t0, tf ]

2 | p(t1) = p(t2)
}

(4)

Inter-temporalities from observations:

T∗
y =

{
(t1, t2) ∈ [t0, tf ]

2 | y(t1) = y(t2)
}

(5)

From constraint (3): h (x (t1) ,x (t2)) = 0 =⇒ y(t1) = y(t2)

T∗
p ⊂ T∗

y (6)
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

Variables: x(·), y(·), T∗
p = {(t1, t2)}

Constraints:
– ẋ (t) = f(x(t))
– y(t) = g (x (t))
– h (x (t1) ,x (t2)) = 0 =⇒ y(t1) = y(t2)

Domains: [x](·), [y](·), Tp
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Dealing with inter-temporalities
Loop detections

1 t-pair (t1, t2) =⇒ 1 inter-temporality

Loop-set from trajectory:

T∗
p =

{
(t1, t2) ∈ [t0, tf ]

2 | p(t1) = p(t2)
}

(4)

Inter-temporalities from observations:

T∗
y =

{
(t1, t2) ∈ [t0, tf ]

2 | y(t1) = y(t2)
}

(5)

From constraint (3): h (x (t1) ,x (t2)) = 0 =⇒ y(t1) = y(t2)

T∗
p ⊂ T∗

y (6)
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Section 4

Dealing with uncertainties
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Uncertain trajectories
Dealing with uncertainties

Actual trajectory: p(t) =
∫ t
t0
v(τ)dτ + p0∫ t

t0

p0
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Uncertain trajectories
Dealing with uncertainties

Actual trajectory: p(t) =
∫ t
t0
v(τ)dτ + p0

Drifting trajectory: pe(t) =
∫ t
t0

(
v(τ)+ε(τ)

)
dτ + p0

p0
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Uncertain trajectories
Dealing with uncertainties

Actual trajectory: p(t) =
∫ t
t0
v(τ)dτ + p0

Approach: consider worst cases by defining bounded solutions
∫ t
t0

p0

one extreme case
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Uncertain trajectories
Dealing with uncertainties

Actual trajectory: p(t) =
∫ t
t0
v(τ)dτ + p0

Approach: consider worst cases by defining bounded solutions
∫ t
t0

p0

tube of trajectories

one extreme case
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Interval Analysis
Dealing with uncertainties

An interval [x]:
I a closed and connected subset of R delimited by two bounds
I [x−, x+] = {x ∈ R | x− 6 x 6 x+}
I [x] ∈ IR

A box [x]:
I a cartesian product of n intervals
I [x] ∈ IRn

Notation: actual value denoted x∗, x∗, . . .
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[a]

[a2]

[a1]

a∗

Figure: a box [a] ∈ IR2



Reliable loop-based localization in very poor environments

Interval Analysis
Dealing with uncertainties

An interval [x]:
I a closed and connected subset of R delimited by two bounds
I [x−, x+] = {x ∈ R | x− 6 x 6 x+}
I [x] ∈ IR

A box [x]:
I a cartesian product of n intervals
I [x] ∈ IRn

Notation: actual value denoted x∗, x∗, . . .

simon.rohou@ensta-bretagne.org IMT Atlantique visit 18 / 37

[a]

[a2]

[a1]

a∗

Figure: a box [a] ∈ IR2



Reliable loop-based localization in very poor environments

Interval Analysis
Dealing with uncertainties

Based on the extension of all classical real arithmetic operators:
I +, −, ×, ÷
I ex: [x] + [y] = [x− + y−, x+ + y+]

I ex: [x]− [y] = [x− − y+, x+ − y−]

Adaptation of elementary functions such as:
I cos, exp, tan, etc.
I output is the smallest interval containing all the images of all

defined inputs through the function
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Tubes
Dealing with uncertainties

Tube [x](·): interval of functions [x−, x+] such that ∀t ∈ R, x−(t) 6 x+(t)

t

[x]

tf
t0

x∗(t)

Figure: tube [x](·) enclosing an uncertain trajectory x∗(·)
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Tubes arithmetic
Dealing with uncertainties

Example:
Tube arithmetic makes it possible to compute the following tubes:

[a](·) = [x](·) + [y](·)
[b](·) = sin

(
[x](·)

)
[c](·) =

∫
0
[x](τ)dτ

Definition:
If f is an elementary function such as sin, cos, . . . ,
f
(
[x](·)

)
is the smallest tube containing all feasible values for

f
(
x(·)

)
, x(·) ∈ [x](·).
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Tubes arithmetic: example
Dealing with uncertainties

[x]

t

[y]

t

[a]

t

[b]

t

[c]

t

a(·) = x(·) + y(·) b(·) = sin
(
x(·)

)
c(·) =

∫
0

x(τ)dτ
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Integral of tubes
Dealing with uncertainties

Definition: the integral of a tube [x](·) = [x−, x+] is an interval:

∫ b

a
[x](τ)dτ =

{∫ b

a
x(τ)dτ | x ∈ [x]

}
=

[∫ b

a
x−(τ)dτ,

∫ b

a
x+(τ)dτ

]
[Aubry2013]

t

[x]

b
a

∫ b

a

x−(τ)dτx−(t)

Figure: blue area: lower bound of the tube’s integral
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Integral of tubes
Dealing with uncertainties

Definition: the integral of a tube [x](·) = [x−, x+] is an interval:

∫ b

a
[x](τ)dτ =

{∫ b

a
x(τ)dτ | x ∈ [x]

}
=

[∫ b

a
x−(τ)dτ,

∫ b

a
x+(τ)dτ

]
[Aubry2013]

t

[x]

a
b

x+(t)

∫ b

a

x+(τ)dτ

Figure: orange area: upper bound of the tube’s integral
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Section 5

Reliable localization method
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Problem statement
Reliable localization method



Variables: x(·), y(·), T∗
p = {(t1, t2)}

Constraints:
– ẋ (t) = f(x(t)) (evolution)
– y(t) = g (x (t)) (observation)
– h (x (t1) ,x (t2)) = 0 =⇒ y(t1) = y(t2) (intertemporality)

Domains: [x](·), [y](·), Tp

I h depicts when a robot performed a loop (t1, t2)

I [x](·), [y](·) are tubes from measurements
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Reliable loop-based localization in very poor environments

Inter-temporalities: reliable approximation
Reliable localization method

Available information:
I 1 t-plane to detect loops (set T∗

p)
I 1 t-plane to detect identical observations (set T∗

y)
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Inter-temporalities: contraction
Reliable localization method

Temporal contraction:

Tp = Tp ∩ Ty (7)

t2

t1
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Back to spatial space
Reliable localization method

T∗
p =

{
(t1, t2) | h(x(t1),x(t2)) = 0︸ ︷︷ ︸

p(t1)=p(t2)

}
(8)
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Variables: x(·), y(·), T∗
p = {(t1, t2)}

Constraints:
– ẋ (t) = f(x(t))
– y(t) = g (x (t))
– h (x (t1) ,x (t2)) = 0 =⇒ y(t1) = y(t2)

Domains: [x](·), [y](·), Tp

Inter-temporal constraint with bounded uncertainties:

∃t1 ∈ [t1], ∃t2 ∈ [t2], ∃p(·) ∈ [p](·) | p(t1) = p(t2) (9)
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Dedicated differential tube contractors
Reliable localization method

Cobs: contraction based on the observation [p]([t2]) made at time [t1].
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Figure: tube [p1](·) before contraction

� Reliable non-linear state estimation involving time uncertainties
S. Rohou, L. Jaulin, L. Mihaylova, F. Le Bars, S. M. Veres. Submitted to Automatica, 2017
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Dedicated differential tube contractors
Reliable localization method

C d
dt
: contraction based on the differential constraint:
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: contraction based on the differential constraint:
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Figure: tube contraction in forward

� Reliable non-linear state estimation involving time uncertainties
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Dedicated differential tube contractors
Reliable localization method

C d
dt
: contraction based on the differential constraint:
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[p1]([t2])

[t1]
t

[p1]

Figure: tube contraction in forward/backward

� Reliable non-linear state estimation involving time uncertainties
S. Rohou, L. Jaulin, L. Mihaylova, F. Le Bars, S. M. Veres. Submitted to Automatica, 2017
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Section 6

Realistic application
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Daurade mission
Realistic application

2 hours experimental mission in Brittany (France)

Figure: The Daurade Autonomous Underwater Vehicle (AUV)
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Reliable approximation of absolute speed v∗(·)
Realistic application

Robot sensors for absolute speed computation:
I velocity sensor (DVL)
I inertial measurement unit

Uncertainties:

I datasheets =⇒ standard deviation σ for each sensor
I 95% confidence rate: v∗1 ∈ [v1] = [v1 − 2σ, v1 + 2σ]

0.683

0.954

v1 − 2σ v1 − σ v1

v1 v1

v

I uncertainties propagated thanks to interval arithmetic
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Reliable approximation of absolute speed v∗(·)
Realistic application

Obtained tube [v](·):

-1.5

-1

-0.5

0

0.5

1

1.5

2

[v1] (m/s)

t

Figure: East speed velocity tube [v1](·)

simon.rohou@ensta-bretagne.org IMT Atlantique visit 33 / 37



Reliable loop-based localization in very poor environments

Reliable approximation of absolute speed v∗(·)
Realistic application

Results...
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Support:

DGA
Direction Générale de l’Armement

Tools:

IBEX library
used for interval arithmetic, contractor programming

VIBES
used for rendering

simon.rohou@ensta-bretagne.org IMT Atlantique visit 35 / 37



Reliable loop-based localization in very poor environments

Tubex library

An open-source C++ library providing tools to guarantee
computations over sets of trajectories.

δ

t

[x]

tf
t0

x∗(t)

http://www.simon-rohou.fr/research/tubex-lib/

simon.rohou@ensta-bretagne.org IMT Atlantique visit 36 / 37

http://www.simon-rohou.fr/research/tubex-lib/


Reliable loop-based localization in very poor environments

References:

� Loop detection of mobile robots using interval analysis
C. Aubry, R. Desmare, L. Jaulin. Automatica, 2013

� Guaranteed computation of robot trajectories
S. Rohou, L. Jaulin, L. Mihaylova, F. Le Bars, S. M. Veres. Robotics and Autonomous Systems, 2017

� Reliable non-linear state estimation involving time uncertainties
S. Rohou, L. Jaulin, L. Mihaylova, F. Le Bars, S. M. Veres. Submitted to Automatica, 2017

� Proving the existence of loops in robot trajectories
S. Rohou, P. Franek, C. Aubry, L. Jaulin. Submitted to IEEE Transactions on Robotics, 2017

simon.rohou@ensta-bretagne.org IMT Atlantique visit 37 / 37


	Introduction
	Motivations, robot localization: p(t)=?
	Problem: similar environments (singularities)

	Formalization
	Mobile robotics
	Set-membership approach
	Loop-based localization method
	Loop-based localization method

	Loop detections
	Definitions (Aubry, 2013)
	Computing loops from proprioceptive sensors
	Dealing with inter-temporalities

	Dealing with uncertainties
	Uncertain trajectories
	Interval Analysis
	Tubes
	Tubes arithmetic
	Tubes arithmetic: example
	Integral of tubes

	Reliable localization method
	Problem statement
	Inter-temporalities: reliable approximation
	Inter-temporalities: contraction
	Back to spatial space
	Dedicated differential tube contractors

	Realistic application
	Daurade mission
	Reliable approximation of absolute speed v*()

	 
	Tubex library
	 

