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Problem. We consider the guaranteed non-linear state estimation
of a robot described by its state x ∈ Rn and measuring distances to
beacons, see Fig. 1. xᵀ = {x, y, θ, v}. System’s description is given by:

R
{

ẋ = f(x,u)
ri(ti) = gj(x(ti))

(1)

Figure 1: Localization of
robot R among beacons

With f : Rn × Rm → Rn, the continu-
ous evolution function based on robot’s
state x and input u ∈ Rm, and gj :
Rn → R, a sporadic observation func-
tion giving a range value ri ∈ R between
the robot and the j -th beacon at time ti.

Main approach. In a set member-
ship approach, x and ẋ respectively be-
long to bounded signals evolving with
time: ∀t , x(t) ∈ [x](t) , ẋ(t) ∈ [ẋ](t).
These trajectories are represented with
tubes [1], see Fig. 2. The more uncer-
tain a trajectory is, the thicker the tube
containing it will be. When trajectory’s
estimation is improved, the tube needs to be contracted, thus becom-
ing thinner. To this end, we propose to break down the problem into
several elementary constraints involving contractors on tubes.
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Figure 2: a tube: guaranteed representation of a set of trajectories (in light gray). A signal s(·) (in orange) belongs
to an interval function so that: ∀t, s(t) ∈ [f ](t) = [f−(t), f+(t)]. This ensures a guaranteed representation of signals.
Functions f−(t) and f+(t) are represented with a set of boxes (in blue).

To this end, we implemented a new C++ library for tubes representations. Code is freely available on the
GitHub software development platform:

IBEX-Robotics library
A complementary C++ library of IBEX for robotics purposes.
https://github.com/ibex-team/ibex-robotics

Future related paper:
• Tube contractions applied to guaranteed non-linear state estimation with time-uncertainties
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3.3 Guaranteed integration
This research on tubes and their related tools – such as contractors, Section 3.2 – brings new ideas and enable us
to consider the problem of guaranteed integration of differential equations [3, 19, 11, 8, 17, 12]. From an initial
box [x] (0), guaranteed integration [20] provides a set of techniques based on interval arithmetic to compute a box-
valued function [x] (t) (a tube) containing true values for the initial value problem. These methods provide interval
counterparts of Euler [16], Runge-Kutta [7] or Taylor [18] integration and validate results using the Picard Theorem.

In robotics, guaranteed integration provides a reliable knowledge about robots trajectories. In this work, we pro-
pose a new approach based on tube arithmetic. Current experiments show interesting results when computing robot
trajectories. This has been compared with existing methods, namely the CAPD DynSys library, well recognized
in the community. Our approach is in fact particularly suitable for robots trajectories and seems to offer better
results in this context. We plan to open discussions about this work during next conferences SWIM’16 and SCAN’16.

Future related paper:
• Guaranteed integration of robot trajectories
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4 Issues/Problems preventing from achieving PhD Targets
None, except time.
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Figure 2: A tube [f ](·) implemented with a set of slices

Break down. Let us consider the given equations: ẋ = v · cos(θ),√
x(t1)2 + y(t1)2 = r1, the following constraints can be established:

continuous constraints

 a = cos(θ)
b = v · a
x =

∫
b

sporadic constraint
{
x(t1) =

√
r21 − y(t1)2

Tube contraction. Our contribution is to perform a reliable state
estimation with a simple and general method involving continuous or
fleeting [2] constraints on tubes. In the continuous case, constraints
are managed with tube arithmetic: variables a and b are tubes too.
[x](·) = [x](·) ∩

∫
[b](·). In the sporadic case, we will show that to

be compliant with tube’s representation [x](·), such a contraction can
only be done considering the derivative tube [ẋ](·).
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