Robust Polygon-Based Localization

Guilherme S. Franco ${ }^{1}$
${ }^{1}$ ENSTA Bretagne, Lab-STICC

11 December 2017

Outline

(1) Motivation
(2) Static Localization

- Map Representation
- Polygon-Based Localization
- Experiments
(3) Dynamic Localization
- Constraints Network
- Experiments
(4) Conclusion

Motivation

Localization problem.
Consider a pose estimation problem based on rangefinder readings.

Motivation

Localization problem.
Consider a pose estimation problem based on rangefinder readings.

Motivation

Localization problem.
Consider a pose estimation problem based on rangefinder readings.

Motivation

Localization problem.
Consider a pose estimation problem based on rangefinder readings.

Motivation

Localization problem.
Consider a pose estimation problem based on rangefinder readings.

Motivation

Localization problem.
Consider a pose estimation problem based on rangefinder readings.

Outilne

(1) Motivation

(2) Static Localization

- Map Representation
- Polygon-Based Localization
- Experiments
(3) Dynamic Localization
- Constraints Network
- Experiments

4 Conclusion

Static Localization

$$
\boldsymbol{h}\left(x, y_{i}\right) \in \mathbb{M}
$$

where:

- $\boldsymbol{x}=(x, y, \theta)$ is the robot's pose to be estimated
- $\boldsymbol{y}_{i}=\left(\rho_{i}, \beta_{i}\right)$, given by a distance ρ_{i} and bearing β_{i}
- \mathbb{M} is the known map.

Static Localization

$$
\boldsymbol{h}\left(x, y_{i}\right) \in \mathbb{M}
$$

where:

- $\boldsymbol{x}=(x, y, \theta)$ is the robot's pose to be estimated
- $\boldsymbol{y}_{\boldsymbol{i}}=\left(\rho_{i}, \beta_{i}\right)$, given by a distance ρ_{i} and bearing β_{i}
- \mathbb{M} is the known map.

$$
h\left(x, y_{i}\right)=h_{i}(x)
$$

Static Localization

$$
\boldsymbol{h}_{i}(\boldsymbol{x})=\left[\begin{array}{l}
x+\rho_{i} \cdot \cos \left(\beta_{i}+\theta\right) \\
y+\rho_{i} \cdot \sin \left(\beta_{i}+\theta\right)
\end{array}\right]
$$

Static Localization

$$
\boldsymbol{h}_{i}(\boldsymbol{x})=\left[\begin{array}{l}
x+\rho_{i} \cdot \cos \left(\beta_{i}+\theta\right) \\
y+\rho_{i} \cdot \sin \left(\beta_{i}+\theta\right)
\end{array}\right]
$$

Map Representation - Static Localization

$$
\mathbb{M}=\delta \mathbb{M} \cup \mathbb{M}_{\text {free }}
$$

Map Representation - Segment Contractor

Map Representation - Segment Contractor

Map Representation - Segment Contractor

$$
C_{\delta \mathbb{M}}=\bigcup_{j=1}^{\operatorname{card}(\mathbb{S})} C_{\mathbb{S}_{j}}
$$

Map Representation - Segment Constraints

$$
\begin{aligned}
& c_{1}: \operatorname{det}\left(\boldsymbol{b}_{j}-\boldsymbol{a}_{j}, \boldsymbol{a}_{j}-\boldsymbol{m}\right)=\left|\begin{array}{ll}
b_{j, 0}-a_{j, 0}, & a_{j, 0}-m_{0} \\
b_{j, 1}-a_{j, 1}, & a_{j, 1}-m_{1}
\end{array}\right|=0, \\
& c_{2}: \min \left(\boldsymbol{a}_{j}, \boldsymbol{b}_{j}\right) \leq \boldsymbol{m} \leq \max \left(\boldsymbol{a}_{j}, \boldsymbol{b}_{j}\right)
\end{aligned}
$$

where:

- $\left(\boldsymbol{a}_{j}, \boldsymbol{b}_{j}\right)$ are the extremities of a segment \mathbb{S}_{j}
- $\boldsymbol{m}=\left(m_{0}, m_{1}\right) \in \delta \mathbb{M}$.

Map Representation

Map Representation

Map Representation

$$
\begin{cases}{\left[\boldsymbol{m}_{k}\right] \subset \mathbb{M}_{\text {free }},} & \mathcal{T}\left(\boldsymbol{m}_{k}\right)=\text { true } \\ {\left[\boldsymbol{m}_{k}\right] \subset \overline{\mathbb{M}},} & \text { Otherwise }\end{cases}
$$

Map Representation

$$
\left\{\begin{array}{l}
{\left[\boldsymbol{m}_{1}\right] \subset \mathbb{M}_{\text {free }},} \\
{\left[\boldsymbol{m}_{2}\right] \subset \overline{\mathbb{M}},}
\end{array}\right.
$$

$\mathbb{M}=\delta \mathbb{M} \cup \mathbb{M}_{\text {free }}$

Map Representation

$$
\left\{\begin{array}{l}
{\left[\boldsymbol{m}_{1}\right] \subset \mathbb{M}_{\text {free }},} \\
{\left[\boldsymbol{m}_{2}\right] \subset \overline{\mathbb{M}},}
\end{array}\right.
$$

$\mathbb{M}=\delta \mathbb{M} \cup \mathbb{M}_{\text {free }}$

Polygon-Based Localization

$$
\mathbb{X}_{i}=\boldsymbol{h}_{i}^{-1}(\mathbb{M})=\left\{\boldsymbol{x} \in \mathbb{R}^{3}: \boldsymbol{h}_{i}(\boldsymbol{x}) \in \mathbb{M}\right\}
$$

where:

- \mathbb{X}_{i} is a set of possible robot's poses

Polygon－Based Localization

Polygon－Based Localization

Polygon-Based Localization

Polygon-Based Localization

Polygon-Based Localization

Polygon－Based Localization

Polygon-Based Localization

Polygon－Based Localization

Polygon-Based Localization

Polygon-Based Localization

Experiments - Simulated Scenario

Figure: Static localization performed in the simulated scenarios, without (a) and with (b) unknown obstacles. The pavings were computed with $\epsilon_{\theta}=10^{\circ}$ for the θ space and $\epsilon=50 \mathrm{~cm}$ for coordinates x and y .

Experiments - Real Scenario

Figure: Static localization performed in the real scenarios, without (a) and with (b) unknown obstacles. The pavings were computed with $\epsilon_{\theta}=10^{\circ}$ for the θ space and $\epsilon=5 \mathrm{~cm}$ for coordinates x and y .

Outilne

(1) Motivation

(2) Static Localization

- Map Representation
- Polygon-Based Localization
- Experiments
(3) Dynamic Localization
- Constraints Network
- Experiments

4 Conclusion

Dynamic Localization

$$
\left\{\begin{array}{l}
\boldsymbol{x}_{k+1}=\boldsymbol{f}\left(\boldsymbol{x}_{k}, \boldsymbol{u}_{k}\right) \\
\boldsymbol{y}_{k}=\boldsymbol{g}\left(\boldsymbol{x}_{k}\right)
\end{array}\right.
$$

where:

- $x \in \mathbb{R}^{n}$ is the state vector
- $\boldsymbol{u} \in \mathbb{R}^{m}$ is the input vector
- $y \in \mathbb{R}^{p}$ are the measurements
- $f: \mathbb{R}^{n} \times \mathbb{R}^{m} \mapsto \mathbb{R}^{n}$ is the evolution function
- $g: \mathbb{R}^{n} \mapsto \mathbb{R}^{p}$ is the observation function

Dynamic Localization

$$
\left\{\begin{array}{l}
\boldsymbol{x}_{k+1}=\boldsymbol{f}\left(\boldsymbol{x}_{k}, \boldsymbol{u}_{k}\right) \\
\boldsymbol{y}_{k}=\boldsymbol{g}\left(\boldsymbol{x}_{k}\right)
\end{array}\right.
$$

where:

- $x \in \mathbb{R}^{n}$ is the state vector
- $\boldsymbol{u} \in \mathbb{R}^{m}$ is the input vector
- $\boldsymbol{y} \in \mathbb{R}^{p}$ are the measurements
- $f: \mathbb{R}^{n} \times \mathbb{R}^{m} \mapsto \mathbb{R}^{n}$ is the evolution function
- $g: \mathbb{R}^{n} \mapsto \mathbb{R}^{p}$ is the observation function

$$
\boldsymbol{x}=(x, y, \theta) \text { and } \boldsymbol{u}=(v, \omega)
$$

Constraints Network

Constraints Network

$$
\boldsymbol{x}_{k+I}=\boldsymbol{f}_{G_{1}}\left(\boldsymbol{x}_{k}, \boldsymbol{u}_{k}\right)=\left(\begin{array}{c}
x_{k}+d t \cdot v_{k} \cos \theta_{k} \\
y_{k}+d t \cdot v_{k} \sin \theta_{k} \\
\theta_{k}+d t \cdot \omega_{k}
\end{array}\right)
$$

Constraints Network

$$
x_{k+1}=\boldsymbol{f}_{G_{2}}\left(x_{k}, \boldsymbol{u}_{k: k+l}\right)
$$

Constraints Network

$$
\begin{aligned}
& \boldsymbol{x}_{k+l}=\boldsymbol{f}_{G_{2}}\left(\boldsymbol{x}_{k}, \boldsymbol{u}_{k: k+l}\right)= \\
& \left(\begin{array}{c}
x_{k} \\
y_{k} \\
\theta_{k}
\end{array}\right)+d t \cdot A \cdot \sum_{i=k}^{k+l}\left(\begin{array}{c}
v_{i} \cos \left(d t \cdot \sum_{j=k}^{i} \omega_{j}\right) \\
v_{i} \sin \left(d t \cdot \sum_{j=k}^{i} \omega_{j}\right) \\
\omega_{i}
\end{array}\right)
\end{aligned}
$$

Constraints Network

$$
\begin{aligned}
& x_{k+l}=\boldsymbol{f}_{G_{2}}\left(x_{k}, \boldsymbol{u}_{k: k+1}\right)= \\
& \left(\begin{array}{c}
x_{k} \\
y_{k} \\
\theta_{k}
\end{array}\right)+d t \cdot A \cdot \sum_{i=k}^{k+1}\left(\begin{array}{c}
v_{i} \cos \left(d t \cdot \sum_{j=k}^{i} \omega_{j}\right) \\
v_{i} \sin \left(d t \cdot \sum_{j=k}^{i} \omega_{j}\right) \\
\omega_{i}
\end{array}\right)
\end{aligned}
$$

Constraints Network

$$
\begin{aligned}
& x_{k+l}=\boldsymbol{f}_{G_{2}}\left(x_{k}, \boldsymbol{u}_{k: k+1}\right)= \\
& \left(\begin{array}{c}
x_{k} \\
y_{k} \\
\theta_{k}
\end{array}\right)+d t \cdot A \cdot \sum_{i=k}^{k+1}\left(\begin{array}{c}
v_{i} \cos \left(d t \cdot \sum_{j=k}^{i} \omega_{j}\right) \\
v_{i} \sin \left(d t \cdot \sum_{j=k}^{i} \omega_{j}\right) \\
\omega_{i}
\end{array}\right)
\end{aligned}
$$

Constraints Network

$$
\begin{aligned}
& x_{k+l}=\boldsymbol{f}_{G_{2}}\left(x_{k}, \boldsymbol{u}_{k: k+1}\right)= \\
& \left(\begin{array}{c}
x_{k} \\
y_{k} \\
\theta_{k}
\end{array}\right)+d t \cdot \boldsymbol{A} \cdot \sum_{i=k}^{k+1}\left(\begin{array}{c}
v_{i} \cos \left(d t \cdot \sum_{j=k}^{i} \omega_{j}\right) \\
v_{i} \sin \left(d t \cdot \sum_{j=k}^{i} \omega_{j}\right) \\
\omega_{i}
\end{array}\right)
\end{aligned}
$$

Constraints Network

$$
\begin{aligned}
& \boldsymbol{x}_{k+l}=\boldsymbol{f}_{G_{2}}\left(\boldsymbol{x}_{k}, \boldsymbol{u}_{k: k+l}\right)= \\
& \left(\begin{array}{l}
x_{k} \\
y_{k} \\
\theta_{k}
\end{array}\right)+d t \cdot A \cdot \sum_{i=k}^{k+l}\left(\begin{array}{c}
v_{i} \cos \left(d t \cdot \sum_{j=k}^{i} \omega_{j}\right) \\
v_{i} \sin \left(d t \cdot \sum_{j=k}^{i} \omega_{j}\right) \\
\omega_{i}
\end{array}\right)
\end{aligned}
$$

Constraints Network

$$
\begin{aligned}
& \boldsymbol{x}_{k+I}=\boldsymbol{f}_{G_{2}}\left(\boldsymbol{x}_{k}, \boldsymbol{u}_{k: k+\prime}\right)= \\
& \left(\begin{array}{c}
x_{k} \\
y_{k} \\
\theta_{k}
\end{array}\right)+d t \cdot A \cdot \sum_{i=k}^{k+I}\left(\begin{array}{c}
v_{i} \cos \left(d t \cdot \sum_{j=k}^{i} \omega_{j}\right) \\
v_{i} \sin \left(d t \cdot \sum_{j=k}^{i} \omega_{j}\right) \\
\omega_{i}
\end{array}\right)
\end{aligned}
$$

Constraints Network - Global Movement Model

$$
A=\left(\begin{array}{ccc}
\cos \theta_{k} & -\sin \theta_{k} & 0 \\
\sin \theta_{k} & \cos \theta_{k} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

$$
\begin{aligned}
& x_{k+1}= \\
& \left(\begin{array}{c}
x_{k} \\
y_{k} \\
\theta_{k}
\end{array}\right)+d t \cdot\left(\begin{array}{ccc}
\cos \theta_{k} & -\sin \theta_{k} & 0 \\
\sin \theta_{k} & \cos \theta_{k} & 0 \\
0 & 0 & 1
\end{array}\right) \cdot \sum_{i=k}^{k+1}\left(\begin{array}{c}
v_{i} \cos \left(d t \sum_{j=k}^{i} \omega_{j}\right) \\
v_{i} \sin \left(d t \sum_{j=k}^{i} \omega_{j}\right) \\
\omega_{i}
\end{array}\right)
\end{aligned}
$$

Constraints Network

\qquad つQく

Experiments

Experiments

- Video

Conclusion

Experiments - Simulated Scenario

Figure: Static localization performed in the simulated scenario. (a) Segment approach and (b) Polygon-based approach. The pavings were computed with $\epsilon_{\theta}=10^{\circ}$ for the θ space and $\epsilon=50 \mathrm{~cm}$ for coordinates x and y .

Experiments - Real Scenario

Figure: Static localization performed in a real scenario. (a) Segment approach and (b) Polygon-based approach. The pavings were computed with $\epsilon_{\theta}=10^{\circ}$ for the θ space and $\epsilon=50 \mathrm{~cm}$ for coordinates x and y .

