Tubex tutorial #2
Logic programming / UE 4.1 — 2020

www.simon-rohou.fr/research/icra2020-tutorial/ensta

This second lesson will extend the previous exercise by dealing with a data association problem together
with localization: the landmarks perceived by the robot are now indistinguishable: they all look alike. The goal
of this exercise is to develop our own contractor in order to solve the problem.

A. Indistinguishable landmarks

Our goal is to deal with the localization of a mobile robot for which a map of the environment is available. It
is assumed that:

the map is static and made of point landmarks;

the landmarks are indistinguishable;

— the position of each landmark is known;

the pose of the robot is not known.

This problem often occurs when using sonars for localization, where it is difficult to distinguish a landmark from
another. The challenge in this type of scenario is the difficulty of data associations, i.e. to establish feature
correspondences between perceptions of landmarks and the map of these landmarks, known beforehand. This is
especially the case of challenging underwater missions, for which one can reasonably assume that the detected
landmarks cannot be distinguished from the other: for instance, two different rocks may have the same aspect
and dimension in sonar images, as illustrated by Figure 1.

Figure 1: Different underwater rocks perceived with one side-scan sonar. These observations are view-point
dependent and the sonar images are noisy, which makes it difficult to distinguish one rock from another only
from image processing. These sonar images have been collected by the Daurade robot (DGA-TN, Shom, Brest)
equipped with a Klein 5000 lateral sonar.

Due to these difficulties, we consider that we cannot compute reliable data associations that stand on
image processing of the observations. We will rather consider the data association problem together with state
estimation.

www.simon-rohou.fr/research/icra2020-tutorial/ensta

B. Perception of identifiable landmarks: formalism

We will first focus on the perception of rocks clearly identified: each observation is related to a known position.
The problem is similar to the localization of the previous lesson, but we also know the bearing, i.e. the angular
position of the rock with respect to the heading of the robot.

The map is known beforehand and the robot obeys
to state equations. For now, the localization problem
corresponds to the following observation function:

y = g(x) 1)y

where x is the unknown state vector: the robot is
located at (x1,72)T with a heading z3. The output
measurement vector is y and is made of the range 1,
and the bearing y», as illustrated by Figure 2. It is g,
assumed that the measurement is bounded: y € [y],
contrary to x that is unknown: x € [x] = [~o00, o0]%.

Often, the observation equation also appears in
the following implicit form:

X1 mi

g(x,y) =0 2) Figure 2: The landmark m = (mq,m2)7 is perceived by
’ the robot at a distance y; and a bearing y,. The pose
In our case, the observation equation is defined as: of the robot is (21,22, x3)T.
1+ y1 - cos (3 + y2) — My
x,y) = . . 3
g(y) <x2+y1-sm(x3+y2)—m2 ()

Note that in a range-only case where the robot only measures the distance y to the landmark, we obtain the
following relation:
9(%,y) = (z1 = m1)? + (2 — ma)® — *.

In the more general case, the observation function g is uncertain, or more precisely, it depends on some
parameters that are not exactly known. The related observation equation can be written as:

g(X, Y, m) = 0. (4)

In a set-membership approach the parameter vector m, expressing the uncertain position of the landmark, is
known to be bounded within an interval-vector (a box): [m]. We emphasize that uncertainties on x and y are
implicitly bounded by [x] and [y].

C. Constraint programming

The problem will be described as a set of constraints depicting Equations (4). A solver based on these relations
will then allow the resolution of this simple state estimation.

In order to build the solver with a ContractorNetwork, we first need to break down Equation (4) into a
set of elementary constraints. The range-and-bearing problem is usually related to the polar constraint that
links Cartesian coordinates to polar ones. This constraint can appear in our decomposition, since a dedicated
contractor already exists to deal with it:

Lootar(d1,da,p,a) : d=p- (Cos(a)) (5)

sin(a)

1. On a sheet of paper, write a decomposition of Equation (4) involving Lolar and intermediate variables.

2. Define the initial domains of each variable.

D. Contractor network

The constraints are applied on sets by means of contractors. Using Tubex, the ContractorNetwork will help
us to solve the problem efficiently.
3. Update your version of Tubex in order to obtain the new features:
cd tubex-1lib
git pull origin master

cd make ; cmake .. ; sudo make install

4. Download the sources of the exercise on the webpage of the lesson! and read carefully the provided code.

5. Define the three-dimensional box [x] € IR® used as a domain of the state. We assume that the position
of the robot is not known: [z1] = [x3] = [—00,00]. However, the heading x3 is completely known (for
instance thanks to a compass); the actual heading 3 is represented by truth[2].

6. Create the contractors related to the decomposition of Question 1. The contractor Cpolar is given by the
class pyibex: :CtcPolar and is used to contract the four interval domains [d;], [d2], [p], []:

pyibex::CtcPolar ctc_polar; // polar constraint (d1,d2,rho,alpha)

The other contractor objects related to the elementary constraints you obtained in Question 1 can be
built with the ibex: :CtcFwdBwd, as we did in the previous Lesson #01 (Section F).

7. Create a ContractorNetwork (CN) to solve the problem by adding (with cn.add(..)) the contractors
and the domains.

8. Use cn.contract () ; to solve the problem, and display the result of [x] with:

fig_map.draw_box(x.subvector(0,1)); // estimated position (2d box)

&

Figure 3: Range-and-bearing localization: expected result with one landmark.

Thttp://simon-rohou.fr/research/icra2020-tutorial/doc/02/tuto_02_src.zip

http://simon-rohou.fr/research/icra2020-tutorial/doc/02/tuto_02_src.zip

E. The problem of data association

Up to now, we assumed the perceived landmark was identified without ambiguity. However, when several
landmarks my, ..., my exist, the observation data may not be associated: we do not know to which landmark
the measurement y refers. We now consider several measurements denoted by y?. Hence the observation
constraint has the form:

{ g(x,y’,m') =0, (6)

(m € [my]) V.-V (m' € [my]),

with m? the unidentified landmark of the observation y?. The V notation expresses the logical disjunction or.
Equivalently, the system can be expressed as:

{ g(x,y",m’) =0, (7a)
mi € M = {[m],..., [mi]}, (7h)

where M is the bounded map of the environment: the set of all landmarks represented by their bounded positions.
In other words, we do not know the right parameter vector mi, ..., my associated with the observation
y'. Equation (7b) represents this problem of data association. Figure 4 illustrates M with the difficulty to
differentiate landmarks in underwater extents.

Figure 4: The yellow robot, equipped with a side-scan sonar, perceives at port side some rocks m* lying on the
seabed. The rocks, that can be used as landmarks, are assumed to belong to small georeferenced boxes [m’]
enclosing uncertainties on their positions. The robot is currently not able to make any difference between the
rocks, as it is typically the case in underwater extents when acoustic sensors are used to detect features.

In this exercise, the data association problem is solved together with state estimation, without image process-
ing. Equation (7a) has been solved in Section D., it remains to deal with the constraint related to Equation (7b).

F. Association constraint

Equation (7b) refers to what we will call the association constraint. This last part of the exercise consists in
implementing a new contractor Casso, that will allow us to solve the data association problem.

Let us consider a constellation of ¢ landmarks M = {[m,], ..., [m/]} of IR? and a box [a] € TR?. Our goal
is to compute the smallest box containing M N [a]. In other words, we want to contract the box [a] so that we
only keep the best envelope of the landmarks that are already included in [a]. An illustration is provided by
the Figures 5.

The definition of the contractor is given by:

Casso ([]) = |_] ([a] N [my]), (8)

J

where | |, called squared union, returns the smallest box enclosing the union of its arguments.

Figure 5: Illustration of the association contractor, before and after the contraction step. The set M of landmarks
is depicted by white boxes. This operator is reliable as it does not remove any significant rock. In this example,
the red perception leads to a reliable association since the box contains only one item of M.

9. We will build our own C++ contractor. To do it, we have to derive the class ibex::Ctc. Insert in your
code (possibly in separated files) the new class:

class CtcAssociation : public ibex::Ctc

{
public:

CtcAssociation(const std::vector<ibex::IntervalVector>& map)
ibex::Ctc(2), m_map(map)
{

}

void contract(ibex::IntervalVector& a)

{
// todo...
}

protected:

const std::vector<ibex::IntervalVector> m_map;
};
With:
— const std::vector<ibex::IntervalVector>& map, the set M

— ibex::IntervalVector& a, the box [a] to be contracted

10. Propose a simple implementation of the method void contract(ibex::IntervalVector& a). Note that
you cannot change the definition of this method. The IBEX documentation may help you to compute
operations on sets such as unions or intersections: http://www.ibex-1ib.org/doc/interval.html

11. Test your contractor with:

—aset M= {((2,3],[2,3])7 . ([5,6],[4,5])7 , ([9,10],[2,3])7}
— two boxes to be contracted: ([0,4],[0,4])T and ([3.5,11],[1,6])T

http://www.ibex-lib.org/doc/interval.html

Figure 6: Expected result for Question 11. Blue boxes are initial domains before contraction. Red boxes are
contracted domains. The left one is identified as it contains only one item of M.

. Localization with data association

We now have all the material to solve the full problem of state estimation with data association. The contractor
Casso Will be added to the CN of Section D.

12. In your code, change the value of nb_landmarks to deal with 3 landmarks.

13. Now, the vectors v_obs and v_b contain three items. Update the CN in order to deal with several
observations. For this, we will need to use intermediate variables.

The case of intermediate variables. The following function:
IntervalVector& d = cn.create_var(IntervalVector(2));

creates an intermediate 2d variable with a 2d box domain: [d] = [~o0,c0]?>. The method create_var ()
returns a C++ reference (in the above example: IntervalVector&). The reference is an alias on the
intermediate variable, that is now inside the contractor network. It can be used in the same way as other
variables.

Why use intermediate variables instead of using directly domains, as we did in the first lesson?

The reason is that if we create a CN and add contractors and domains in another block of code (for
instance during an iteration), then the C4++ variables are destroyed at the end of the block and so the
CN lose the reference to them. For instance:

ContractorNetwork cn;
ibex::CtcFwdBwd ctc_plus(*new ibex::Function("a", "b", "c", "b+c-a"));
Interval x(0,1), y(-2,3);

if (/* some condition */)

{

Interval a(1,20);

cn.add(ctc_plus, {x, y, a}); // constraint x+y=a
} // ’a’ is lost here

cn.contract(); // segmentation fault
Instead, we create the variable inside the CN in order to keep it outside the block:
ContractorNetwork cn;

ibex::CtcFwdBwd ctc_plus(*new ibex::Function("a", "b", "c", "b+c-a"));
Interval x(0,1), y(-2,3);

if (/* some condition */)

{
Interval& a = cn.create_var(Interval(1,20));
cn.add(ctc_plus, {x, y, a});

} // ’a’ is not lost

cn.contract();
In our case, because there are several landmarks, we will have to use intermediate variables in the itera-

tion of each observation i. You can change the nb_landmarks variable in the code in order to add more
observations, if you want.

Note that one contractor can be added to the CN several times together with different domains.
14. Create an object of your own contractor C,sso With:

CtcAssociation ctc_asso(v_b);

and add it to the network for each observation, by using for instance:

cn.add(ctc_asso, {v_m[il});

where v_m would be a vector of 2d boxes representing all the m* of Equation (7b).

15. Test the state estimation with one call to the contract () method.
Run several simulations: are the landmarks all identified?

Figure 7: Localization with data association: example of expected result. The blue boxes depict the landamrks
(red boxes) that have been identified. [x] is represented by the black box.

H. The robot moves (optional)

The movement of the robot is described by a differential equation: we now have to deal with a dynamical
system. The state equations are:

x(t) = f(x(t), u(t)) (evolution equation)
g(x(t;),y",m") =0 (observation equation) 9)
m’ e M (data association)

where x(t;) corresponds to the time when the observation y* has been made.

Tubex offers several tools to deal with dynamical systems such as this one. The same framework of constraint
programming can be extended to deal with differential equations while keeping the advantages of simplicity and
genericity of the approach. We can now expand the formalism of Contractor Networks by introducing a new
kind of variable: trajectories, denoted by x(t), or x(t) is the vector case. Trajectories are sets of values evolving
with time. A new kind of variable comes with a new kind of domain, that will allow constraints computations
around this variable. Hence, we also introduce tubes, that are intervals of trajectories. We denote them by
[x](t), or [x](t) for tube vectors. Tubex offers functionalities to handle tubes, such as basic operations on sets
(intersection of tubes, additions, bisections, ...) and contractors to apply constraints on trajectories.

One can refer to the documentation of Tubex for more information about basic operations on tubes:
http://simon-rohou.fr/research/tubex-1ib/03_basics/04_tubes.html

Equations (9) can be broken down into the following set of elementary constraints:

(1) v(t) =f(x(t),u(t)

(ii) x(t) =v(t)

(11i) P’ =x(t;)

(iv) ... (10)
(v) ..

(vii) Lagso(m?)

You have to complete the above decomposition with your own elementary constraints of Question (1). Note
that these constraints involve new intermediate variables introduced for ease of decomposition:

— a vector p* € R3, representing the state at time t; (which is equivalent to the static state x of previous
sections);

— a trajectory v(t) € R — R? that depicts the derivative of the state. In practice, v(¢) can be given by
velocity sensors. In our case, we will assume that v(¢) is at hand, enclosed in a tube [v](t), and we will
not consider the Constraint ().

There exists a catalog of contractors for differential constraints, available in Tubex. We will use them to
solve our problem, without creating new operators:

— (iit): p* = x(t;) is a constraint that links the vector p’ to the evaluation of the trajectory x(t) at time ¢;.
The constraint seems trivial, but it has to be considered carefully in the context of interval computations.
A dedicated contractor Ceya already exists to deal with it. It will allow the correction of the positions of
the robot.

We will apply?: Cevar ([t:], [P'], [x](t), [V](t)).
The Ceya) contractor is provided in the class CtcEval.

— (i4): x(t) = v(t) is the simplest differential constraint that binds a trajectory x(¢) to its derivative v(t).
The related contractor C 4 exists and allows contractions on the tube [x](t) to preserve only trajectories

consistent with the derivatives enclosed in the tube [v](t).

We will apply C.a ([x](1), [v]())-
The C a contractor is provided in the class CtcDeriv.

2note that the contractor needs the derivative information: [v](t).

http://simon-rohou.fr/research/tubex-lib/03_basics/04_tubes.html

I. Expanding the CN with contractors on tubes (optional)

16. Download new sources on the webpage of the lesson:
http://simon-rohou.fr/research/icra2020-tutorial/doc/02/tuto_02_src_tubes.zip

Read carefully the provided code. The tubes are already created for the problem. Note that the vectors
of observations are now of dimension 3: they include time in their first component. The robot moves and
describes a Lissajous curve oo from ¢y = 0 to ty = 6.

17. Complete the code with the contractors you defined in the previous sections. Do not forget to add your
own implementation of C,gso.

18. The contractors Ceya are already added in the provided code. Add the contractor C 4 (from the class
CtcDeriv) to the CN. You should obtain a result similar to Figure 8.

Figure 8: Dynamic localization with data association: example of expected result. The identified landmarks
are green painted. The tube is depicted in blue and the actual (but unknown) trajectory is plotted in white.

Note that it is not necessary to know the initial position of the robot x(¢y) to be able to solve this prob-
lem. This is one of the advantages of constraint programming coupled with interval analysis, that take into
account any information without a specific temporal order. Other conventional methods would hardly solve
such problem.

http://simon-rohou.fr/research/icra2020-tutorial/doc/02/tuto_02_src_tubes.zip

	Indistinguishable landmarks
	Perception of identifiable landmarks: formalism
	Constraint programming
	Contractor network
	The problem of data association
	Association constraint
	Localization with data association
	The robot moves (optional)
	Expanding the CN with contractors on tubes (optional)

