

Achieving stable formation control for two ROVs

Morgan Louédec, Luc Jaulin, Christophe Viel June 29th 2023

Context of formation control

Proof of stability for ROVs formation control

Experimental application

Context of formation control

Formation control needs practical applications

- Moving in a formation makes the group more reliable
- many **theoretical controllers** are proposed for formation control [3, 4, 1, 2]
- There is a need to study **more complex systems** (multi-agent, underwater perturbation, communication issues,...)
- Real case application are still rare

Figure: Collaborative inspection with ROVs (Remotely Operated Vehicles)

Context of formation control

Example - acoustic localization with little information

- Global position measured by USBL (Ultra Short Base-Line)
- Position is measured every 6s
- Can we achieve this formation without dead reckoning?

Figure: The information on positions is limited

Figure: Equilateral triangle formation with Virtual Structure and pose tracking

Proof of stability for ROVs formation control

Modelling a synchronous hybrid system with Two ROVs (1/7)

Figure: Cyber-Physical multi-agent system, a synchronous hybrid system

Modelling a synchronous hybrid system with Two ROVs (2/7)

Horizontal positions

$$\boldsymbol{p}_{b} = \boldsymbol{d}_{b} \cdot \begin{bmatrix} \cos(\phi_{b}) \\ \sin(\phi_{b}) \end{bmatrix} \in \mathbb{R}^{2} \quad (1)$$
$$\boldsymbol{p}_{r} = \boldsymbol{d}_{r} \cdot \begin{bmatrix} \cos(\phi_{r}) \\ \sin(\phi_{r}) \end{bmatrix} \in \mathbb{R}^{2} \quad (2)$$

Figure: Cartesian and polar coordinates

8

Modelling a synchronous hybrid system with Two ROVs (3/7)

- Time of the discrete update (control and measurement) $t_k = k \cdot T_a$ with the period $T_a > 0$.
- ROV are modeled as simple integrators. For $t \in [t_k, t_{k+1}]$,

$$\dot{\boldsymbol{p}}_{b}(t) = \boldsymbol{u}_{b,k}$$
$$\dot{\boldsymbol{p}}_{r}(t) = \boldsymbol{u}_{r,k}$$
(3)

• Let $i \in \mathbb{N}$. Measuring for *lnky* at time t_{2i} and for *Blinky* at time t_{2i+1} . The position memory

$$m_{b,2i} = m_{b,2i+1} = p_b(t_{2i})$$

$$m_{r,2i+1} = m_{r,2i+2} = p_r(t_{2i+1})$$
 (4)

Modelling a synchronous hybrid system with Two ROVs (4/7)

Desired positions:

$$\boldsymbol{p}_{b,k}^{*} = \boldsymbol{d}^{*} \cdot \begin{bmatrix} \cos\left(\phi_{k} - \frac{\pi}{6}\right) \\ \sin\left(\phi_{k} - \frac{\pi}{6}\right) \end{bmatrix}$$
$$\boldsymbol{p}_{r,k}^{*} = \boldsymbol{d}^{*} \cdot \begin{bmatrix} \cos\left(\phi_{k} + \frac{\pi}{6}\right) \\ \sin\left(\phi_{k} + \frac{\pi}{6}\right) \end{bmatrix}$$
(5)

with the desired distance $d^* > 0$ and the orientation of the triangle ϕ_k given by

$$\phi_{k} = \frac{\arg\left(\boldsymbol{m}_{r,k}\right) + \arg\left(\boldsymbol{m}_{b,k}\right)}{2}.$$
 (6)

Figure: Equilateral triangle formation with Virtual Structure and pose tracking

Modelling a synchronous hybrid system with Two ROVs (5/7)

Proportional controller, with the gain $k_p > 0$:

$$\boldsymbol{u}_{b,k} = k_{p} \cdot (\boldsymbol{p}_{b,k}^{*} - \boldsymbol{m}_{b,k})$$
$$\boldsymbol{u}_{r,k} = k_{p} \cdot (\boldsymbol{p}_{r,k}^{*} - \boldsymbol{m}_{r,k})$$
(7)

Figure: Cyber-Physical multi-agent system, a synchronous hybrid system

Modelling a synchronous hybrid system with Two ROVs (6/7)

- Global state vector $\boldsymbol{z} \in \mathbb{R}^8$
- z_1 , z_2 and z_3 are continuous
- z_4 , z_5 and z_6 are discrete
- *z*₇ and *z*₈ are piece-wise continuous
- Equilibrium point $m{z}_{eq}=0$
- Periodic discrete evolution

$$\boldsymbol{z}_{2i+2} = \boldsymbol{h}(\boldsymbol{z}_{2i}) \tag{8}$$

$$\boldsymbol{h} = \boldsymbol{\phi}_{\mathcal{T}} \circ \boldsymbol{g}_{r} \circ \boldsymbol{\phi}_{\mathcal{T}} \circ \boldsymbol{g}_{b} \tag{9}$$

with the continuous-time evolution ϕ_T and the discrete updates \boldsymbol{g}_r and \boldsymbol{g}_b .

Modelling a synchronous hybrid system with Two ROVs (7/7)

Figure: Time evolution of the global state. $h = \phi_T \circ g_r \circ \phi_T \circ g_b$. The state stay in the Tube $\mathbb{G}(t)$

The effect of the controller gain, in Simulation

How do we prove the stability of this system ???

How ???

Stability Theory

• We can study the discrete system

$$z_{2i+2} = h(z_{2i}), 0 = h(0).$$
(10)

- But we don't have the analytical expression of *h*.
- So, we can't compute the eigenvalues of the Jacobian Matrix of h.
- And, we can't use Lyapunov functions.

A possible solution: use **guaranteed integration** to prove the existence of **positive invariant ellipsoids**.

Stability analysis with positive invariant ellipsoid

Figure: The state cannot escape a PI (Positive invariant) ellipsoid

Definition of a non-degenerated ellipsoid

$$\mathcal{E}\left(\boldsymbol{arGam{\Gamma}}
ight)=\left\{ \boldsymbol{x}\in\mathbb{R}^{n}|\boldsymbol{x}^{T}\boldsymbol{arGam{\Gamma}}^{-T}\boldsymbol{arGam{\Gamma}}^{-1}\boldsymbol{x}\leq1
ight\}$$
(11)

with $\Gamma \in \mathbb{R}^{n \times n}$ and the positive definite shape matrix $\Gamma \Gamma^{T} \in S_{n}^{+}$.

Stability analysis with positive invariant ellipsoid

Figure: Illustration of the Method

Method to prove the existence of a PI ellipsoid

1 Choose a candidate $\mathcal{E}(\Gamma_0)$

- 2 With guaranteed integration, Compute an enclosing ellipsoid $\mathcal{E}(\Gamma_1)$, such that $h(\mathcal{E}(\Gamma_0)) \subseteq \mathcal{E}(\Gamma_1)$.
- **3** Verify the inclusion $\mathcal{E}(\Gamma_1) \subseteq \mathcal{E}(\Gamma_0)$ to prove that $\mathcal{E}(\Gamma_0)$ is positive invariant.

Computation time

Figure: This numerical method has a polynomial complexity

Illustration of a 8-dimensional ellipsoid

Figure: Projections of the ellipsoids $\mathcal{E}(\Gamma_0)$ (red) and $\mathcal{E}(\Gamma_1)$ (green)

Presentation of the Real system (1/2)

Figure: X150 Mirco-USBL USBL fixed on a pole

Figure: BlueROV2 *Inky* and *Blinky* in the Pool of the ENSTA Bretagne

Presentation of the Real system (2/2)

Figure: Architecture of the system

Context of the Experiment

Figure: Experiment at the lake of Guerledan

Reconstruction of the Experiment

Figure: Display of the Data on Rviz

Evolution of the memory state

Figure: Evolution of z_4 , z_5 and z_6 during this experiment

Conclusion

Results:

- We proved the stability of a synchronous nonlinear hybrid system
- We achieved correct formation control in practice

Future study:

- Find bigger positive invariant ellipsoids
- Enhance the localization of the ROVs (tune the USBL, predict movement based on propeller input, identify the mechanical model of the ROV,...)

Experimental application Bibliography I

- Camila M. G. Gussen, Paulo S. R. Diniz, Marcello L. R. Campos, Wallace A. Martins, Felipe M. Costa, and Jonathan N. Gois.
 A Survey of Underwater Wireless Communication Technologies. *Journal of Communication and Information Systems*, 31, October 2016. Number: 1.
- Kwang-Kyo Oh, Myoung-Chul Park, and Hyo-Sung Ahn. A survey of multi-agent formation control. *Automatica*, 53:424–440, March 2015.
- Auwal Shehu Tijjani, Ahmed Chemori, and Vincent Creuze.
 A survey on tracking control of unmanned underwater vehicles: Experiments-based approach.
 Annual Reviews in Control, September 2022.

Bibliography II

Yue Yang, Yang Xiao, and Tieshan Li.

A Survey of Autonomous Underwater Vehicle Formation: Performance, Formation Control, and Communication Capability. *IEEE Communications Surveys & Tutorials*, 23(2):815–841, 2021. Conference Name: IEEE Communications Surveys & Tutorials.