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Abstract— This paper deals with the localization problem of a
robot in an environment made of indistinguishable landmarks,
and assuming the initial position of the vehicle is unknown. This
scenario is typically encountered in underwater applications for
which landmarks such as rocks all look alike. Furthermore, the
position of the robot may be lost during a diving phase, which
obliges us to consider unknown initial position. We propose a
deterministic approach to solve simultaneously the problems
of data association and state estimation, without combinatorial
explosion. The efficiency of the method is shown on an actual
experiment involving an underwater robot and sonar data.

I. INTRODUCTION

This paper deals with the localization of a mobile robot
[11], [3] for which a map of the environment is available. It
is assumed that

– the map is static and made of point landmarks;
– the landmarks are indistinguishable;
– the position of each landmark is known;
– the initial pose of the robot is not known.

This problem, already considered in the literature, often
occurs when using sonars for localization [8], [21], [24],
where it is difficult to distinguish a landmark from another
[14]. The challenge in this type of scenario is the difficulty
of data associations, i.e. to establish feature correspondences
between perceptions of landmarks and the map of these
landmarks, known beforehand. This is especially the case of
challenging underwater missions [38], [27], [37], for which
one can reasonably assume that the detected landmarks
cannot be distinguished from the other: for instance, two
different rocks may have the same aspect and dimension
in sonar images, as illustrated by Figure I. In addition, the
landmark detection process is sensitive to the point of view
of the sensor and some landmarks of the map could not
even be detected during a survey. Therefore, no reliable data
associations based on landmarks shapes can be assumed.
Lastly, we could benefit from a sonar tracking system to
improve the localization when perceiving some unidentified
landmark, but we consider this matching as non reliable and
it will not be used for the localization.

Due to these difficulties, we consider that we cannot
compute reliable data associations that stand on image pro-
cessing of the observations. We will rather consider the data
association problem together with state estimation. Indeed,
any proprioceptive information of the vehicle, such as the
distance travelled between two observations, may help to
associate perceptions with nodes of the map.
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Fig. 1. Different underwater rocks perceived with one side-scan sonar.
These observations are view-point dependent and the sonar images are noisy,
which makes it difficult to distinguish one rock from another only from
image processing. The sonar images of this paper have been collected by
the Daurade robot (DGA-TN, Shom, Brest) equipped with a Klein 5000
lateral sonar.

This approach has already been studied with methods
combining a probabilistic filter with a branch-and-bound
algorithm to match the landmarks between two different
views [35], [20]. However, due to the branching operations,
these methods involve a lot of computational resources. On
top of that, they require knowledge about the initial position
of the robot, that is often not available.

Our contribution is to cast the localization problem into a
constraint network for which constraint propagation methods
can be used [32]. The branchings are replaced by contraction
operators (or contractors) which makes the resolution much
more efficient by avoiding the combinatorial explosion. In
practice, the contractors use interval computations to elim-
inate unfeasible parts of the search space. Interval analysis
[17], [18], [25] has been used for more than thirty years
in control [28], [33] or state estimation. It appears to be
well suited to handle uncertainties such as measurement
errors or unknown positions, without requiring linearizations,
independence between variables or Gaussian distributions.

II. FORMALISM

The map is known beforehand and the robot obeys to
state equations. The localization problem corresponds to the
following state estimation:{

ẋ(t) = f
(
x(t),u(t)

)
(evolution equation)

yi = g
(
x(ti)

)
(observation equation) (1)

where x is the unknown state vector, u is the input measure-
ment vector and yi is an output measurement vector made at
time ti. As x and u continuously evolve with time, we define
them as trajectories denoted by x(·) and u(·), contrary to yi

that represents discrete data. In this paper, we will assume
that all errors are bounded [36]. This assumption has often
been made in the context of localization [6], [26], [23], [7],
[10]. Therefore, it is assumed that u(t) ∈ [u] (t) ∀t and that
for each measurement, yi ∈

[
yi
]
.



Often, the observation equation also appears in the follow-
ing implicit form:

g
(
x(ti),y

i
)
= 0. (2)

Example. Assume that we have a robot located at
(x1, x2)

ᵀ with a heading x3. It perceives a landmark m
which position is (m1,m2)

ᵀ. The corresponding measure-
ment vector y is made of the range y1 and the bearing y2,
as illustrated by Figure 2.

Fig. 2. The landmark m = (m1,m2)ᵀ is perceived by the robot at a
distance y1 and a bearing y2. The pose of the robot is (x1, x2, x3)ᵀ.

In this example, the observation equation is defined as:

g(x,y) =

(
x1 + y1 · cos (x3 + y2)−m1

x2 + y1 · sin (x3 + y2)−m2

)
.

Note that in a range-only case where the robot only measures
the distance y to the landmark, we obtain the following
relation:

g(x, y) = (x1 −m1)
2
+ (x2 −m2)

2 − y2.

In the more general case, the observation function g is
uncertain, or more precisely, it depends on some parameters
that are not exactly known. The related observation equation
can be written as:{

g
(
x(ti),y

i,m
)
= 0,

m ∈ [m].
(3)

In a set-membership approach the parameter vector m,
expressing the uncertain position of the landmark, is known
to be bounded within an interval-vector (a box): [m]. We
emphasize that uncertainties on x(ti) and yi are implicitly
bounded by [x](ti) and [yi].

Data association. When several landmarks m1, . . . , m`

exist, the observation data may not be associated: we do not
know to which landmark the measurement yi refers. Hence
the observation constraint has the form:{

g
(
x(ti),y

i,mi
)
= 0,(

mi ∈ [m1]
)
∨ · · · ∨

(
mi ∈ [m`]

)
,

(4)

with mi the unidentified landmark perceived at time ti.
Equivalently, the system can be expressed as:{

g
(
x(ti),y

i,mi
)
= 0,

mi ∈M = {[m1], . . . , [m`]} ,
(5a)

(5b)

where M is the bounded map of the environment: the set
of all landmarks represented by their bounded positions. In
other words, we do not know the right parameter vector
m1, . . . , m` associated with the observation function. Equa-
tion (5b) is a discrete constraint, since M is made of a finite
number of isolated points, and corresponds to a problem of
data association [35]. Figure 3 illustrates the difficulty to
differentiate landmarks of underwater extents.

Fig. 3. The yellow robot, equipped with a side-scan sonar, perceives at
port side some rocks mi lying on the seabed. The rocks, that can be used
as landmarks, are assumed to belong to small georeferenced boxes [mi]
enclosing uncertainties on their positions. The robot is currently not able
to make any difference between the rocks, as it is typically the case in
underwater extents when acoustic sensors are used to detect features [9].

In this paper, the data association problem is solved
together with state estimation, without image processing.
Indeed, any proprioceptive information such as inputs [u](t)
may help to associate observations with nodes of the map.
Valid associations are then useful to obtain accurate state
estimation, which could allow further associations. This
chicken-and-egg problem is formalized by the following
equations: ẋ(t) = f

(
x(t),u(t)

)
(evolution eq.)

g
(
x(ti),y

i,mi
)
= 0 (observation eq.)

mi ∈M (data association)
(6)

In order to solve the problem efficiently and in a simple
manner, we propose an interval-based method coupled with
constraint-programming [19], [6], [15], [16].

III. CONSTRAINT NETWORK

The problem will be described as a set of constraints
depicting Equations (6). A solver based on these relations
will then allow the resolution of both state estimation and
data association.

Evolution equation. Without loss of generality, we will
consider a robot moving on a plane among landmarks. The
motion is described by the following state equation:

ẋ(t) = f (x(t),u(t))

=

( cos(x3(t)) − sin(x3(t))
sin(x3(t)) cos(x3(t))

)
· v(t)

ω(t)

 .
(7)

The state vector x ∈ R3 represents the position of the robot
and its heading. The input vector is u = (vu, vv, ω)

ᵀ, where
v = (vu, vv)

ᵀ is the horizontal speed of the vehicle in its
own reference frame and ω is its yaw-rate. In the underwater



case, v can be measured with a Doppler Velocity Log (DVL)
sensor. In addition, gyroscopes are usually used to obtain the
angular velocity ω.

Observation equation. For some times ti, the robot
collects the range-bearing vector yi to a nearby landmark
mi that belongs to the map M made of a collection of
georeferenced points. Hence, the observation function g is:

g
(
x(ti),y

i,mi
)
=(

x1(ti)
x2(ti)

)
+ yi1 ·

(
cos
(
x3(ti) + yi2

)
sin
(
x3(ti) + yi2

) )− (mi
1

mi
2

)
. (8)

Decomposition. These equations can be broken down into
the following set of elementary constraints:

(i) v(·) = f
(
x(·),u(·)

)
(ii) ẋ(·) = v(·)
(iii) pi = x(ti)
(iv) di = mi − pi

1,2

(v) ai = pi3 + yi2

(vi) di = yi1 ·
(
cos(ai)
sin(ai)

)
(vii) mi ∈M

(9)

These constraints involve intermediate variables introduced
for ease of decomposition: ai ∈ R, vectors di ∈ R2,
pi ∈ R3, and a trajectory v(·) ∈ R → R3. The notation
p1,2 represents the subvector (p1, p2)

ᵀ of p ∈ R3. This
procedure of decomposition aims at revealing elementary
constraints that have been already studied by the community
in previous works. In the contractor programming framework
[29], constraints are applied on sets by means of contractors:
operators reducing interval domains according to the con-
straints without losing any solution. A contractor is denoted
by C.

Domains (sets). Domains have to be defined for each
variable of Equations (9). They will be interval [ai], boxes
[pi], [mi], [di], [yi] and tubes as intervals of trajectories:
[x](·), [v](·), [u](·). Some domains are initialized according
to measurements and their bounded uncertainties, e.g. yi ∈
[yi]. Other domains are initialized as sets of all real values,
e.g. [di] = [−∞,∞]2.

The resolution of our problem consists in applying the
necessary contractors on these domains in an iterative way.
The resolution process stops when the contractors are no
more efficient.

Catalog of contractors. Papers and software libraries
already provide solutions for elementary contractors. The
ones required for Equations (9) are listed hereafter.

– (iv), (v): difference and addition relations are respec-
tively handled by simplest contractors C− and C+. For
purposes of understanding, we provide below the defi-
nition of C+ associated with the constraint (a = x+ y): [a]

[x]
[y]

 C+7−−→

 [a] ∩ ([x] + [y])
[x] ∩ ([a]− [y])
[y] ∩ ([a]− [x])

 . (10)

In our case, we would apply C
(
[ai], [pi3], [y

i
2]
)

in order
to deal with relation (v), thus contracting the three
domains of interest.

– (i): expressions that are more complex than addition,
such as function f of Equation (7), can easily be dealt
with by combining contractors. Algorithms such as
those described in [2], [1] and software libraries like
IBEX [4] are at hand to automatically combine these
operators. For our problem, we will stand on this library
to provide us with a complex contractor denoted Cf .

– (vi): the polar equation connects Cartesian coordinates
to polar ones. The minimal contractor Cpolar, introduced
in [5], can be used to contract the related domains:
Cpolar

(
[di1], [d

i
2], [y

i
1], [a

i]
)
.

– (iii): pi = x(ti) is a constraint that links the vector
pi to the evaluation of the trajectory x(·) at time ti. A
dedicated contractor Ceval has been provided in [31]. It
will allow the correction of the positions of the robot.

– (ii): ẋ(·) = v(·) is the simplest differential constraint
that binds a trajectory x(·) to its derivative v(·). The
related contractor C d

dt
has been introduced in [30] and

allows contractions on the tube [x](·) to preserve only
trajectories consistent with the derivatives enclosed in
the tube [v](·).

The last constraint to consider is (vii): mi ∈ M, which
corresponds to the data association part of our problem. To
our knowledge, a contractor to deal with this relation does
not exist yet in the literature. In order to expand the catalog
of contractors, we provide in the following section material
for the so-called constellation contractor.

IV. CONSTELLATION CONSTRAINT

This section proposes a new operator named constellation
contractor denoted by Cconstell, that will allow us to solve the
data association problem. Let us consider a constellation of
` points M = {[m1], . . . , [m`]} of IRd and a box [x] ∈ IRd.
We want to compute the smallest box Cconstell ([x]) containing
M ∩ [x], or equivalently:

Cconstell ([x]) =
⊔
j

(
[x] ∩ [mj ]

)
, (11)

where
⊔

, called squared union, returns the smallest box
enclosing the union of its arguments. Figure 4 illustrates this
operator1.

Since we will have many different boxes [x] to be pro-
cessed based on a static constellation, a preprocessing step
can be done to speed up the computations. This procedure is
interesting for sets M made of a huge number of landmarks,
as it can be the case in various applications: a preprocessing
step will allow a logarithmic complexity of the contractor
with respect to the number of points `.

Preprocessing step. We build a balanced binary tree
corresponding to an R-tree [12]. The R-tree has the following
properties:

1Note that the map M could be represented by a subpaving or an image,
for which a contractor such as the one used in [34] could be applied, but this
would require a more complex data structure unnecessarily cumbersome.



Fig. 4. Illustration of the constellation contractor, before and after the
contraction step. This operator is reliable as it does not remove any
significant rock. In this example, the red perception leads to a reliable
association since the box contains only one item of M.

– (i) To each node β of the tree is associated a box �β
containing at least one point of the constellation M and
such that C (�β) = �β. Notation �β represents the
minimal enveloping box of all points of M represented
by β.

– (ii) If β0 is the root, then M ⊂ �β0.
– (iii) If β1, β2 are children of β then (�β1 ∩M) ∪

(�β2 ∩M) = (�β ∩M).
– (iv) If β1, β2 are brothers then �β1 ∩�β2 = ∅. When

this property is satisfied, the R-tree is called a R*-tree.
This property is not restrictive in our context since we
assume that the mj are completely known beforehand.

– (v) The tree is balanced with respect to the space. This
means that the bisection direction for the branching of
the node β is decided with respect to the largest width
of �β.

– (vi) The tree is balanced with respect to the constel-
lation. It means that bisection position of β is decided
with respect to the median in order to minimize the
difference |card (�β1 ∩M)− card (�β2 ∩M)| .

These properties are illustrated by Figure 5 in the case
of a constellation of ` = 10 points represented by blue
tiny boxes. The root β0 of the tree has two children β1
and β2. Note that |card (�β1 ∩M)− card (�β2 ∩M)| = 0,
which corresponds to the minimum that can be obtained.
The corresponding bisection results from the median. The
node β2 has two children β3 and β4. The node β5 is a leaf
of the tree and �β5 corresponds to a single point of the
constellation M.

Once constructed, the R-tree allows a logarithmic com-
plexity with respect to `. The corresponding constellation
contractor Cconstell is provided in Algorithm 1 and illustrated
by Figure 6.

Fig. 5. An R-tree is created beforehand in order to get an efficient
constellation contractor.

Algorithm 1 Cconstell ([x] , β)

1 if �β ⊂ [x], return �β
2 if �β ∩ [x] = ∅, return ∅
3 return Cconstell

(
[x] , left child (β)

)
t Cconstell

(
[x] , right child (β)

)
Example (Fig. 6). First, since �β0 6⊂ [x], we explore the

two children of β0. Since �β1 ⊂ [x] and �β2 6⊂ [x], only
the branch corresponding to β2 is explored. Again, since
�β3 ⊂ [x] and �β4 6⊂ [x], we only browse β4.

Finally, the exploration of the tree corresponds to the
following algebraic calculus:

Cconstell ([x] , β) = [M ∩�β0 ∩ [x]]
= �β1 t [M ∩�β2 ∩ [x]]
= �β1 t�β3 t [M ∩�β4 ∩ [x]]
= �β1 t�β3 t [M ∩�β5 ∩ [x]]
= �β1 t�β3 t�β5.

V. APPLICATION

A. Solver

All the necessary contractors are at hand to build a solver
for the problem. The domains of the variables are predefined
as explained in Section III and the following contracting
operations are applied in any order up to a fixed point:

(i) Cf
(
[v](·), [x](·), [u](·)

)
(ii) C d

dt

(
[x](·), [v](·)

)
(iii) Ceval

(
[ti], [p

i], [x](·)
)

(iv) C−
(
[di], [mi], [pi

1,2]
)

(v) C+
(
[ai], [pi3], [y

i
2]
)

(vi) Cpolar
(
[di1], [d

i
2], [y

i
1], [a

i]
)

(vii) Cconstell
(
[mi]

)
(12)



Fig. 6. Illustration of Cconstell based on an R-tree.

The following test-case aims at providing a practical
illustration of how the constraint propagation method can
be used to:

1) estimate a set of feasible trajectories of the vehicle;
2) solve the data association problem without any com-

binatorial explosion.
Once these two issues are solved with contractors, any
classical localization method, such as an EKF [13], can be
added to obtain a more accurate estimate of the trajectory.
The filter can be initialized with a starting point in the
reliable set [x1,2](t0) and updated only with observations
that are correctly associated.

B. Test-case

Our solver is illustrated on an actual dataset involving
the Autonomous Underwater Vehicle (AUV) Daurade, see
Figure 7. The robot evolved underwater during 45 minutes,
5 meters above the seabed. Daurade started its mission with
a huge position uncertainty. This can happen during a dive in
deep waters [22] or when, for discretion or security purposes,
a long-range underwater transit phase is required to reach
the working area. Therefore, we consider that [x1,2](t0) =
[−∞,∞]2. We also assume that a part of the mission area
has already been mapped during a previous survey. The
corresponding map M describing this area is modeled as a
set of 133 landmark points that are well georeferenced.

The robot performed some boustrophedon pattern, typi-
cally used for survey missions, as depicted in Figure 8. It
sensed its environment using a side-scan sonar that gives
lateral images of the seabed, with a scope of 75m on each
side. During the mission, 54 objects have been extracted from
the sonar images with the help of algorithms. Unfortunately,
other objects are ignored and will not be used for the
localization.

Only the 2-dimensional positions x1,2(·) of the robot need
to be estimated since other state variables (roll, pitch, altitude

Fig. 7. Daurade AUV managed by DGA Techniques Navales (Brest)
and the Service Hydrographique et Océanographique de la Marine (Shom),
during an experiment dedicated to this work, in the Rade de Brest, 2015.

and depth) are directly measured by accurate sensors. The
heading x3 is assumed to be known with an accuracy of ±5
degrees.
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Fig. 8. Map of the mission with the results of the presented approach.
The actual trajectory of the AUV is depicted by a white line, enclosed in
the horizontal projection of the tube [x](·), depicted in blue. The map is
composed of 133 objects represented by boxes. Landmarks that have been
perceived and recognized by the robot without ambiguity are depicted in red.
The observations obtained from the sonar images are drawn with gray pies
depicting both range and bearing uncertainties. The related measurement
times ti are represented by small robots along the white trajectory. The range
of the side-scan sonar is represented by the red line on the last position.

C. Results

Table I shows bounds used to quantify errors on sen-
sor readings. Figure 8 shows the final trajectory obtained
after 9 iterations of the localization algorithm. The whole
estimation is performed in less than 2.5 seconds on i7-
4700HQ CPU@2.40GHz, up to a fixed point where no more
contractions are obtained. At the end, 51 of the 54 objects
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Fig. 9. Zoom on the mission map. One rock, depicted by the blue box, has
never been seen by the robot. The four other landmarks have been perceived
and identified.

perceived in the sonar images have been correctly associated,
which means that the remaining three boxes [mi] contain
more than one item of M. The white trajectory depicted in
Figures 8 and 9, filtered with an external USBL sensor that
has not been used by the localization algorithm, is gener-
ally considered as the truth in our underwater experiments.
However, USBL stands on acoustical measurements coming
with strong errors. Hence, we can only consider it as a
good support for verifying the quality of our set-membership
estimation.

TABLE I
UNCERTAINTIES ON DATA USED FOR THE APPLICATION.

data description uncertainty unit
x3(t) heading [−5, 5] deg
v(t) linear speed [−0.015, 0.015]2 m.s−1

ω(t) angular velocity [−0.001, 0.001] deg.s−1

y1(t) measur. range [−1.5, 1.5] m
y2(t) measur. bearing [−0.1, 0.1] deg

In Table II, the duration of each contraction step is given
and appears to be constant. During the constraint propagation
process, the thinner the trajectory, the smaller the number
of landmarks contained in [mi], and vice versa. As an
indicator, column 3 (resp. 4) of Table II shows the minimal
(resp. maximal) number of landmarks included in the [mi]
amongst all measurements. The last column corresponds to
the number of correct associations, i.e. when [mi] contains a
single point of M. Figure 10 shows the diameter of the tube
[x1,2](·) with respect to time. We can note on this figure
that the initial position of the robot is not known before the
contractions, and is finally estimated with an error of 3.6m
in the worst case.
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Fig. 10. d = w([x1,2]) when reaching a contracting fixed point. The value
d represents the diameter of each box [x1](t)× [x2](t), that is to say the
localization error in the very worst case. The gray vertical lines are the 54
observation instants ti.

TABLE II
NUMERICAL RESULTS OF THE ITERATIVE LOCALIZATION ALGORITHM.

# time(s) #min #max #ok
1 0.278 133 133 0
2 0.271 14 64 0
3 0.268 5 52 0
4 0.266 1 34 2
5 0.271 1 16 39
6 0.267 1 4 48
7 0.266 1 3 49
8 0.266 1 3 50
9 0.266 1 2 51

VI. CONCLUSION

This contraction method, enriched with the constellation
contractor introduced in this paper, is shown to be powerful
in situations involving a huge number of possible data
associations. In comparison, other existing methods often run
into difficulties when both the initial position and the data
associations are unknown. Furthermore, the results of the
algorithm are sets that are guaranteed to contain the actual
but unknown values of our problem. This is particularly
important in order to provide reliability for autonomous
systems.

With the computation times in the application part of
this work, we demonstrate that the proposed algorithm can
also be considered for online localization. In addition, this
approach provides a reliable way to gather different views
of a same object. This is useful to build datasets, for mine
hunting purposes among other things.

AVAILABLE LIBRARIES

The Tubex library implemented during this work and
a video of the application are available on www.simon-
rohou.fr/research/datasso/. Simple but controlled simulation
experiments are also available for the reader wishing to
appreciate the performances of the proposed method.
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